Четность перестановок
Дискриминантом называется многочлен от n переменных . Квадрат дискриминанта является симметрическим многочленом. Следовательно, при перестановке переменных может меняться только знак дискриминанта.
Определение 4.12. Перестановка f называется четной, если она не меняет знак дискриминанта ( то есть ), и нечетной в противном случае.
Свойство 4.4. Четность произведения перестановок зависит от четности сомножителей. Произведение перестановок одинаковой четности всегда четно, а произведение перестановок разной четности – нечетно.
Выполнение перестановки сводится к последовательному выполнению перестановок сомножителей. Следовательно, знак перестановки равен произведению знаков сомножителей.
Определение 4.13. Перестановка, меняющая только два соседних по порядку номера, называется инверсией. Инверсия имеет вид (i-i+1).
Свойство 4.5. Инверсия является нечетной перестановкой.
Применив инверсию к дискриминанту, видим, что поменяется знак только у единственного сомножителя . Следовательно, дискриминант меняет знак.
Определение 4.14. Для перестановки f определим число нарушений порядка как число всех пар, для которых i<j и f(i)>f(j).
Например, при так как существуют только две пары на которых нарушается порядок. Это 1,2 (f(1)=3>f(2)=1) и 1,3 (f(1)>f(3)=2).
Теорема 4.29.Перестановка f представима в виде произведения инверсий.
Доказательство проведем индукцией по . Для существует единственная перестановка . Если , то перестановка сама является инверсией. Пусть утверждение теоремы верно при . Покажем его справедливость при . Найдем номер i для которого f(i)>f(i+1) (существование такого i очевидно). Перестановка (i-i+1)f имеет j нарушений порядка. По предположению индукции, эта перестановка представима в виде произведения j инверсий . Из полученного равенства, умножив слева на (i-i+1), находим . Перестановка f представлена в виде произведения j+1 инверсий, тем самым теорема доказана.
Из теоремы вытекает, что четность перестановки совпадает с четностью числа нарушений порядка в ней.
Определение 4.15. Перестановка, меняющая только два элемента, называется транспозицией.
Лемма 4.9. Транспозиция является нечетной перестановкой.
Рассмотрим транспозицию (i-j), где i<j. Число нарушений порядка этой транспозиции равно 2(j-i)-1, всегда нечетное число.
Лемма 4.10. Четность цикла длины k равна четности числа k-1.
Доказательство проведем индукцией по длине цикла k. При k=2 утверждение доказано в предыдущей лемме. Пусть утверждение леммы верно при k-1. Покажем его справедливость для цикла длины k. Из равенства следует, что четность цикла длины k равна четности цикла длины k-1 плюс 1, то есть четности k-1.
Определение 4.16. Сумма длин независимых циклов минус количество циклов называется декрементом перестановки.
Разложив перестановку в произведение независимых циклов, определим её чётность.
Теорема 4.30. Четность перестановки равна ее декременту.
-
Содержание
- Натуральные числа
- Метод математической индукции.
- Бином Ньютона, треугольник Паскаля
- Целые числа
- Рациональные числа
- Числовые кольца, поля
- Вещественные числа
- Поле комплексных чисел
- Комплексная плоскость.
- Извлечение корней, корни из единицы
- Делимость многочленов. Наибольший общий делитель. Алгоритм Евклида. Расширенный алгоритм Евклида.
- Разложение рациональных функций в сумму дробей.
- Неприводимый многочлен, его свойства
- Из вытекает, либо , либо .
- Если неприводимый многочлен делится на неприводимый многочлен, то они отличаются числовым множителем.
- Корень многочлена.
- Интерполяционный многочлен
- Интерполяционный многочлен в форме Лагранжа
- Интерполяционный многочлен в форме Ньютона
- Разложение многочлена над полем рациональных чисел
- Примитивный многочлен, его свойства
- Критерий Эйзенштейна
- Все коэффициенты многочлена f(X), кроме старшего, делятся на p
- Старший коэффициент не делится на p
- Свободный член не делится на
- Метод Кронекера разложения многочлена на неприводимые многочлены над кольцом целых чисел.
- Рациональные корни.
- Присоединение корня. Поле разложения многочлена.
- Формальная производная, ее свойства
- Производные высоких порядков
- Интерполяционный многочлен Лагранжа-Сильвестра
- Формулы Виета
- Симметрические полиномы
- Формулы Кардано
- Способ Феррари
- Дискриминант
- Основная теорема Алгебры
- Разложение многочлена на неприводимые множители над полем вещественных чисел
- Теорема Штурма
- Любые два соседних многочлена не имеют общих корней
- Последний многочлен не имеет вещественных корней.
- Если в окрестностях корня a многочлена сам многочлен возрастает, то , а если убывает, то
- Метод Гаусса решения системы линейных уравнений
- Равносильные преобразования
- Умножение строки не ненулевое число.
- Перестановка строк
- Прибавление к некоторой строке другой строки, умноженной на число.
- Метод Гаусса.
- Перестановки
- Четность перестановок
- Определитель
- Свойства определителя
- Изменит знак при перестановке столбцов
- Равен нулю, если имеется два одинаковых столбца
- Не изменится при прибавлении к столбцу другого столбца, умноженного на число.
- Вычисление определителей произвольных порядков
- Определитель Вандермонда
- Теорема Лапласа
- Умножение матриц
- Формула Бине-Кощи
- Операции с матрицами
- Обратная матрица
- Правило Крамера
- Матрица элементарных преобразований
- Построение обратной матрицы
- Блочные матрицы
- Алгоритм Штрассена
- Кронекерово произведение
- Формула Фробениуса
- Линейные пространства.
- . Линейная зависимость. Теорема о замене. Ранг системы.
- Конечномерные пространства. Базис. Размерность. Дополнение до базиса. Базис суммы, пересечения.
- . Прямая сумма подпространств. Проекция.
- Изменение координат вектора при изменении базиса.
- Изоморфизм линейных пространств.
- Задание прямой и плоскости в пространстве. Деление отрезка. Задачи.
- Ранги матрицы.
- Общее решение системы линейных уравнений.
- Двойственное пространство
- Взаимное расположение линейных многообразий в пространстве.
- Геометрия на плоскости и в пространстве.
- Скалярное произведение.
- Симметричность .
- Векторное и смешанное произведение.
- Уравнение прямой и плоскости в пространстве
- Евклидово пространство. Скалярное произведение.
- Изменение матрицы Грама при изменении базиса.
- Ортогональность.