logo
Lektsii_po_GA_1_semestr_PI

Симметричность .

  • В доказательстве нуждается только третье равенство. Если c=0, то равенство очевидно. Пусть . Проекция вектора b на c равна .

    Из равенства и приведённой выше формулы выводим . Приравняем коэффициенты при векторе c в левой и правой частях равенства и умножим на квадрат длины вектора c, получим свойство 3.

    Задание длин векторов определяет скалярное произведение. Действительно, из свойств скалярного произведения выводим равенство , которое перепишем в виде

    . Таким образом, задание длин векторов равносильно заданию скалярного произведения и наоборот.

    Выразим скалярное произведение через координаты перемножаемых векторов. Пусть - базис пространства векторов, и , - разложения векторов a,b по этому базису. Тогда по свойствам скалярного произведения выводим . Обозначим через матрицу Грамма от векторов , составленную из скалярных произведений этих векторов, через - координаты вектора a в базисе f. В этих обозначениях скалярное произведение можно записать с помощью матричных операций следующим образом .

    Векторы называются ортогональными (перпендикулярными) если угол между ними равен . Условие ортогональности векторов равносильно равенству нулю их скалярного произведения.

    Базис называется ортогональным, если базисные векторы попарно ортогональны. Матрица Грамма ортогональной системы векторов – диагональная. Выражение скалярного произведения через координаты векторов в ортогональном базисе принимает более простой вид, а именно, .

    В ортогональном базисе скалярное произведение вектора a на базисный вектор равно , то есть, координаты вектора a находятся по формулам .

    Ортогональный базис , в котором длина каждого базисного вектора равна 1, называется ортонормированным. В ортонормированном базисе координаты вектора x определяются по формулам , а скалярное произведение векторов равно .