logo
Lektsii_po_GA_1_semestr_PI

Изменение матрицы Грама при изменении базиса.

Допустим, в евклидовом пространстве V заданы два базиса и . Обозначим через матрицу перехода, связывающие координаты вектора в разных базисах. Пусть для определённости . Скалярное произведение не зависит от выбора базиса, поэтому . Подставим в правую часть равенства вместо координат вектора в базисе e их выражение через координаты в базисе f. В результате придём к равенству . Поскольку полученное равенство справедливо для любых векторов x и y, то выводим .