Извлечение корней, корни из единицы
Из комплексного числа существует ровно n корней степени n. Справедливо . Если , то множество всех корней n-ой степени имеет вид: .
Отсюда вытекает, что формула Муавра-Лапласа обобщается и на случай рациональных степеней. Следует иметь в виду, что она даёт одно из возможных значений, а не всё множество.
Особый интерес представляет множество корней степени n из 1. Легко проверить, что это множество замкнуто относительно операции умножения. Более того, множество корней степени n представляется как степень одного из корней, т.е. . Корень степени n из 1 называется первообразным, если последовательным возведением его в степень можно получить всё множество корней степени n из 1.
Теорема 1.5 (о первообразных) Корень из 1 вида является первообразным тогда и только тогда, когда наибольший общий делитель k и n равен 1.
Доказательство. Положим и построим последовательность чисел до первого повторения. Поскольку в указанной последовательности встречаются только корни из 1 степени n, количество которых не больше n, то повтор наступит обязательно. Пусть и j>1, тогда , и повтор встретился раньше. Следовательно, s - наименьшее число, при котором , или, то же самое, ks делится на n без остатка. Наименьшее число s, при котором ks делится на n, равно n/НОД(n,k). Корень будет первообразным тогда и только тогда, когда в последовательности встречаются все корни, т.е. s=n, а значит n=n/НОД(n,k), или НОД(n,k)=1.
-
Вычисление формул специального вида
-
Вычисление формул вида
-
Введём комплексное число . Из формулы Муавра-Лапласа вытекают равенства и , сложив их, получим . Из последнего равенства выводим , и далее по биному Ньютона . Положив , придём к равенству .
-
Вычисление формул вида
Введём комплексное число . Как и выше, выводим . Подставим в сумму . Для выполнения операции деления представим 1-z в тригонометрической форме: и аналогично . После выполнения преобразований придём к окончательной формуле
-
Вычисление формул вида .
Обозначим сумму через , где j=0,1,…,d-1, а через - первообразный корень степени d из 1. Тогда, легко проверить, , где j=0,1,…,d-1. Умножим каждое из равенств на и сложим. В результате получим равенство . Запишем в тригонометрической форме возведём в степень n и подставим: или, что .
-
Многочлены
Определение 2.2Многочленом (полиномом) называется функция вида .
Коэффициенты многочлена берутся из некоторого числового множества M. Множество всех многочленов с коэффициентами из M обозначим через M(x). В качестве M обычно рассматривается числовое кольцо, либо числовое поле.
-
Операции над многочленами.
С многочленами над числовым кольцом можно проводить операции сложения, вычитания и умножения. Данные операции разобраны в школьном курсе математики. Ясно, что в результате получится многочлен с коэффициентами из этого же кольца. Интересна связь коэффициентов произведения многочленов с коэффициентами сомножителей. Пусть в результате перемножения многочленов и получается многочлен . Тогда , в правой части равенства предполагается, что при и при .
Над многочленами над числовым полем кроме перечисленных операций определена операция деления с остатком.
Теорема 2.6 (Деление многочленов)
При делении многочленов над некоторым полем частное и остаток определены единственным образом.
Доказательство очевидно.
Для деления на двучлен x-a разработана компактная схема деления, которая называется схемой Горнера. Данная схема применяется и для вычислений значения многочлена в точке.
Теорема 2.7 (Безу)
Остаток от деления многочлена f(x) на двучлен x-a равен f(a).
- Натуральные числа
- Метод математической индукции.
- Бином Ньютона, треугольник Паскаля
- Целые числа
- Рациональные числа
- Числовые кольца, поля
- Вещественные числа
- Поле комплексных чисел
- Комплексная плоскость.
- Извлечение корней, корни из единицы
- Делимость многочленов. Наибольший общий делитель. Алгоритм Евклида. Расширенный алгоритм Евклида.
- Разложение рациональных функций в сумму дробей.
- Неприводимый многочлен, его свойства
- Из вытекает, либо , либо .
- Если неприводимый многочлен делится на неприводимый многочлен, то они отличаются числовым множителем.
- Корень многочлена.
- Интерполяционный многочлен
- Интерполяционный многочлен в форме Лагранжа
- Интерполяционный многочлен в форме Ньютона
- Разложение многочлена над полем рациональных чисел
- Примитивный многочлен, его свойства
- Критерий Эйзенштейна
- Все коэффициенты многочлена f(X), кроме старшего, делятся на p
- Старший коэффициент не делится на p
- Свободный член не делится на
- Метод Кронекера разложения многочлена на неприводимые многочлены над кольцом целых чисел.
- Рациональные корни.
- Присоединение корня. Поле разложения многочлена.
- Формальная производная, ее свойства
- Производные высоких порядков
- Интерполяционный многочлен Лагранжа-Сильвестра
- Формулы Виета
- Симметрические полиномы
- Формулы Кардано
- Способ Феррари
- Дискриминант
- Основная теорема Алгебры
- Разложение многочлена на неприводимые множители над полем вещественных чисел
- Теорема Штурма
- Любые два соседних многочлена не имеют общих корней
- Последний многочлен не имеет вещественных корней.
- Если в окрестностях корня a многочлена сам многочлен возрастает, то , а если убывает, то
- Метод Гаусса решения системы линейных уравнений
- Равносильные преобразования
- Умножение строки не ненулевое число.
- Перестановка строк
- Прибавление к некоторой строке другой строки, умноженной на число.
- Метод Гаусса.
- Перестановки
- Четность перестановок
- Определитель
- Свойства определителя
- Изменит знак при перестановке столбцов
- Равен нулю, если имеется два одинаковых столбца
- Не изменится при прибавлении к столбцу другого столбца, умноженного на число.
- Вычисление определителей произвольных порядков
- Определитель Вандермонда
- Теорема Лапласа
- Умножение матриц
- Формула Бине-Кощи
- Операции с матрицами
- Обратная матрица
- Правило Крамера
- Матрица элементарных преобразований
- Построение обратной матрицы
- Блочные матрицы
- Алгоритм Штрассена
- Кронекерово произведение
- Формула Фробениуса
- Линейные пространства.
- . Линейная зависимость. Теорема о замене. Ранг системы.
- Конечномерные пространства. Базис. Размерность. Дополнение до базиса. Базис суммы, пересечения.
- . Прямая сумма подпространств. Проекция.
- Изменение координат вектора при изменении базиса.
- Изоморфизм линейных пространств.
- Задание прямой и плоскости в пространстве. Деление отрезка. Задачи.
- Ранги матрицы.
- Общее решение системы линейных уравнений.
- Двойственное пространство
- Взаимное расположение линейных многообразий в пространстве.
- Геометрия на плоскости и в пространстве.
- Скалярное произведение.
- Симметричность .
- Векторное и смешанное произведение.
- Уравнение прямой и плоскости в пространстве
- Евклидово пространство. Скалярное произведение.
- Изменение матрицы Грама при изменении базиса.
- Ортогональность.