logo
Lektsii_po_GA_1_semestr_PI

Разложение многочлена на неприводимые множители над полем вещественных чисел

Рассмотрим многочлен с вещественными коэффициентами . Над полем комплексных чисел он раскладывается на линейные множители. Если a его комплексный корень, то , т.е. то же корень f(x). Таким образом, многочлен f(x) делится на трёхчлен с вещественными коэффициентами. Тем самым устанолена

Теорема 2.25. Над полем вещественных чисел многочлен раскладывается в произведение неприводимых многочленов степени 1 и 2. Разложение единственно с точностью до перестановки сомножителей.