logo search
Пенроуз Р

3.17. Робот ошибается и робот "имеет в виду"? 271

бы определить "машину для доказательства теорем", аналогичную той, возможность создания которой в случае математиков-людей допускал Гёдель, см. §§3.1, 3.3). Вообще говоря, существенно не то, чтобы система Q (М) действительно играла такую универсальную роль в отношении потенциальных способностей робота, связанных с -высказываниями, а лишь то, чтобы она была достаточно обширна для того, чтобы допускать применение гёделевского доказательства к самой себе (и, соответственно, к системе . Позднее мы увидим, что необходимость в

таком применении возникает лишь в случае некоторых конечных систем Щ-высказываний.

Таким образом, мы - как, собственно, и робот - должны учитывать возможность того, что некоторые из -утверждений робота окажутся в действительности ошибочными, и то, что робот может самостоятельно обнаружить и исправить эти ошибки согласно собственным внутренним критериям, сути дела не меняет. А суть дела заключается в том, что поведение робота в этом случае становится как нельзя более похоже на поведение математика-человека. Человеку ничего не стоит оказаться в ситуации, когда он (или она) полагает, что истинность (или ложность) того или иного -высказывания неопровержимо установлена, в то время как в его рассуждениях имеется ошибка, которую он обнаружит лишь значительно позднее. Когда ошибка наконец обнаруживается, математик ясно видит, что его ранние рассуждения неверны, причем в соответствии с теми же самыми критериями, какими он руководствовался и ранее; разница лишь в том, что ранее ошибка замечена не была, - и вот -высказывание, полагаемое неопровержимо истинным тогда, воспринимается сейчас как абсолютно ложное (и наоборот).

Мы вполне можем ожидать подобного поведения и от робота, т. е. на его -утверждения, вообще говоря, полагаться нельзя, пусть даже он и удостоил их самолично статуса . Впоследствии робот может исправить свою ошибку, однако ошибка-то уже сделана. Каким образом это обстоятельство отразится на нашем выводе относительно обоснованности формальной системы Q (М)? Очевидно, что система Q (М) не является целиком и полностью обоснованной, не "воспринимает" ее как таковую и робот, так что его гёделевскому предположению G (Q (М)) доверять нельзя. К этому, в сущности, и сводится суть оговорки (Ь).

272 Глава 3

Попробуем выяснить, может ли наш робот, приходя к тому или иному "неопровержимому" заключению, что-либо иметь в виду, и если да, то что именно. Уместно сопоставить эту ситуацию с той, что мы рассматривали в случае математика-человека. Тогда нас не занимало, что конкретно случилось обнаружить какому-либо реальному математику, нас занимало лишь то, что может быть принято за неопровержимую истину в принципе. Вспомним также знаменитую фразу Фейнмана: "Не слушайте, что я говорю; слушайте, что я имею в виду!". Похоже, нам нет необходимости исследовать то, что робот говорит, исследовать нужно то, что он имеет в виду. Не совсем, впрочем, ясно (особенно если исследователь имеет несчастье являться приверженцем скорее точки зрения , нежели ), как следует интерпретировать саму идею того, что робот способен что бы то ни было иметь в виду. Если бы было возможно опираться не на то, что робот -утверждает, а на то, что он в действительности "имеет в виду", либо на то, что он в принципе "должен иметь в виду", то тогда проблему возможной неточности его -утверждений можно было бы обойти. Беда, однако, в том, что в нашем распоряжении, по всей видимости, нет никаких средств, позволяющих снаружи получить доступ к информации о том, что робот "имеет в виду" или о том, что, "как ему кажется, он имеет в виду". До тех пор, пока речь идет о формальной системе Q (М), нам, судя по всему, придется полагаться лишь на доступные -утверждения, в достоверности которых мы не можем быть полностью уверены.

Не здесь ли проходит возможная операционная граница между точками зрения и ? Не исключено, что так оно и есть; хотя позиции и эквивалентны в отношении принципиальной возможности внешних проявлений сознательной деятельности в поведении физической системы, люди, этих позиций придерживающиеся, могут разойтись в своих ожиданиях. как раз в вопросе о том, какую именно вычислительную систему можно рассматривать как способную осуществить эффективное моделирование мозговой активности человека, находящегося в процессе осознания справедливости того или иного математического положения (см. конец §3.12). Как бы то ни было, возможные расхождения в такого рода ожиданиях не имеют к нашему исследованию сколько-нибудь существенного отношения.

3.18. Введение случайности: ансамбли роботов 273

3.18. Введение случайности: ансамбли всех возможных роботов

В отсутствие прямого операционного метода разрешения этих семантических проблем нам придется полагаться на конкретные -утверждения, которые наш робот будет делать, побуждаемый механизмами, управляющими его поведением. Нам придется смириться с тем, что некоторые из этих утверждений могут оказаться ошибочными, однако такие ошибки исправимы и, в общем случае, чрезвычайно редки. Разумно будет предположить, что всякий раз, когда робот допускает ошибку в одном из своих -утверждений, ошибку эту можно приписать (по меньшей мере частично) каким-то случайным факторам, присутствующим в окружении или во внутренних процедурах робота. Если вообразить себе второго робота, функционирующего в соответствии с механизмами того же типа, что управляют поведением первого робота, однако при участии иных случайных факторов, то этот второй робот вряд ли совершит те же ошибки, что и первый, - но вполне может совершить другие. Упомянутые факторы могут привноситься теми самыми подлинно случайными элементами, которые определяются либо как часть информации, поступающей на вход робота из внешнего окружения, либо как компоненты внутренних процедур робота. Как вариант, они могут представлять собой псевдослучайные результаты неких детерминистских, но хаотических вычислений, как внешних, так и внутренних.

В рамках настоящего рассуждения я буду полагать, что ни один из подобных псевдослучайных элементов не играет в происходящем иной роли, чем та, которую могут выполнить (по меньшей мере с тем же успехом) элементы подлинно случайные. Вполне естественная, на мой взгляд, позиция. Впрочем, не исключается и возможность обнаружения в поведении хаотических систем (отнюдь не сводящемся только лишь к моделированию случайности) чего-то такого, что может послужить приближением какой-либо интересующей нас разновидности невычислительного поведения. Я не припомню, чтобы такая возможность где-либо всерьез обсуждалась, хотя есть люди, которые твердо убеждены в том, что хаотическое поведение представляет собой фундаментальный аспект деятельности мозга. Лично для меня подобные аргументы останутся неубедительными до тех пор, пока мне не продемонстрируют какое-нибудь существенно

274 Глава 3

неслучайное (т.е. непсевдослучайное) поведение такой хаотической системы - поведение, которое может в сколько-нибудь сильном смысле являться приближением поведения подлинно невычислительного. Ни один намек на подобного рода демонстрацию моих ушей пока не достиг. Более того, как мы подчеркнем несколько позднее (§3.22), в любом случае маловероятно, что хаотическое поведение сможет проигнорировать те сложности, которые представляет для вычислительной модели разума гёделевское доказательство.

Допустим пока, что любые псевдослучайные (или иным образом хаотические) элементы в поведении нашего робота или в его окружении можно заменить элементами подлинно случайными, причем без какой бы то ни было потери эффективности. Для выяснения роли подлинной случайности нам необходимо составить ансамбль из всех возможных альтернативных вариантов. Поскольку мы предполагаем, что наш робот имеет цифровое управление, и, соответственно, его окружение также можно реализовать в каком-либо цифровом виде (вспомним о "внутренних" и "внешних" участках ленты нашей описанной выше машины Тьюринга; см. также §1.8), то количество подобных возможных альтернатив непременно будет конечным. Это число может быть очень большим, и все же полное описание всех упомянутых альтернатив представляет собой задачу чисто вычислительного характера. Таким образом, и сам полный ансамбль всех возможных роботов, каждый из которых действует в соответствии с заложенными нами механизмами, составляет всего-навсего вычислительную систему - пусть даже такую, какую нам вряд ли удастся реализовать на практике, используя те компьютеры, которыми мы располагаем в настоящее время или можем вообразить в обозримом будущем. Тем не менее, несмотря на малую вероятность практического осуществления совокупного моделирования всех возможных роботов, функционирующих в соответствии с набором механизмов М, само вычисление "непознаваемым" считаться не может; иначе говоря, мы способны понять (теоретически), как построить такой компьютер - или машину Тьюринга, - который с подобным моделированием справится, пусть даже оно пока и не осуществимо практически. В этом состоит ключевой момент нашего рассуждения. Познаваемым механизмом или познаваемым вычислением является тот механизм или то вычисление, которое человек способен описать; совсем