2.10. Возможные формальные возражения против 171
нованного алгоритма будет подробно рассмотрена в § 3.2 и § 3.4. Поскольку эта возможность не противоречит выводу , она не является предметом настоящего обсуждения.) В данном случае нас не занимают исправимые ошибки, так как к вопросу о принципиальной достижимости тех или иных результатов они никакого отношения не имеют. А. вот возможные неопределенности в действительных взглядах математиков, безусловно, требуют дальнейшего обсуждения, которое и приводится ниже.
Q13. У математиков нет абсолютно определенных убеждений относительно обоснованности или непротиворечивости используемых ими формальных систем - как нет и однозначного ответа на вопрос о том, "пользователями" каких именно формальных систем они себя полагают. Не подвергаются ли их убеждения постепенному размыванию по мере того, как формальные системы все более удаляются от области феноменов, доступных непосредственному интуитивному или экспериментальному восприятию?
И правда, нечасто встретишь математика, способного похвалиться прочно устоявшимися и непоколебимо непротиворечивыми убеждениями, когда речь заходит об основах предмета. Кроме того, по мере накопления опыта математик вполне может изменить свои взгляды относительно того, что считать неопровержимо истинным, если он вообще склонен считать неопровержимо истинным что бы то ни было. Можно ли, например, быть совершенно и полностью уверенным в том, что число 1 отлично от числа 2? Если говорить о некоей абсолютной человеческой уверенности, то не совсем ясно, можно ли подобное понятие как-то однозначно определить. Однако какую-то точку опоры все же выбрать необходимо. Вполне приемлемой точкой опоры может стать принятие в качестве неопровержимо истинной некоторой системы убеждений и принципов, от которой уже можно двигаться в своих рассуждениях дальше. Разумеется, нельзя забывать и о том, что многие математики вовсе не имеют определенного мнения относительно того, что именно можно считать неопровержимо истинным. Таких математиков я попросил бы какую-никакую опору для себя все же выбрать и просто быть готовыми при необходимости впоследствии ее сменить. Как показывает
172 Глава 2
доказательство Гёделя, какую бы позицию математик в этом случае ни занял, ее все равно невозможно полностью уместить в рамки правил любой постижимой формальной системы (а если и возможно, то этот факт невозможно однозначно установить). И дело даже не в том, что та или иная конкретная позиция постоянно изменяется; система убеждений, полностью охватываемая рамками любой (достаточно обширной) формальной системы F, неизбежно должна также простирается и за пределы доступной F области. Любая позиция, среди неопровержимых убеждений которой имеется и убеждение в обоснованности системы F, должна также включать в себя и убежденность в истинности гёделевского предположения7 G(F). Убежденность в истинности G (F) не представляет собой изменения позиции; эта убежденность уже подразумевается неявно в исходной позиции, допускающей принятие истинности формальной системы F, пусть даже поначалу это и не очевидно.
Безусловно, всегда существует возможность того, что в выводы, получаемые математиком на основании исходных посылок какой-либо конкретной точки зрения, закрадется ошибка. Одна только возможность возникновения такой ошибки - даже если в действительности никакой ошибки допущено не было - может привести к уменьшению степени убежденности, которую математик питает в отношении своих выводов. Однако такое "постепенное размывание" нас, вообще говоря, не занимает. Подобно действительным ошибкам, оно "исправимо". Более того, если доказательство было проведено действительно корректно, то чем дольше его изучаешь, тем, как правило, более убедительными представляются полученные в нем выводы. "Постепенное размывание" математик может испытать на практике, но не в принципе, что возвращает нас к обсуждению возражения Q12.
Таким образом, вопрос перед нами встает здесь следующий: имеет ли место постепенное размывание в принципе, т. е. может ли математик счесть, скажем, обоснованность некоторой формальной системы F неопровержимой, тогда как в обоснованности более сильной системы F* он будет лишь "практически уверен". Этот вопрос не представляется мне сколько-нибудь серьезным, коль скоро, какой бы ни была система F, мы вправе настаи-
7Пояснение к используемым здесь обозначениям можно найти в §2.8. Впрочем, G (F) без ущерба для смысла рассуждения можно было бы везде заменить на П (F), в чем мы убедимся ниже.
- Пенроуз р. Тени разума: в поисках науки о сознании. 1994
- Часть I. Почему для понимания разума необходима новая физика?
- Глава 1. Сознание и вычисление 27
- Глава 2. Гёделевское доказательство 111
- Глава 3. О невычислимости в математическом мышлении 206
- Часть II. Новая физика, необходимая для понимания разума в поисках невычислительной физики разума
- Глава 4. Есть ли в классической физике место разуму? 339
- Глава 5. Структура квантового мира 373
- Глава 6. Квантовая теория и реальность 474
- Глава 7. Квантовая теория и мозг 534
- Глава 8. Возможные последствия 598
- Часть I
- Часть I
- 1.1. Разум и наука
- 1.2. Спасут ли роботы этот безумный мир?
- 1.2. Спасут ли роботы этот безумный мир? 31
- 1.2. Спасут ли роботы этот безумный мир? 33
- 1.3. Вычисление и сознательное мышление
- 1.3. Вычисление и сознательное мышление 35
- 1.3. Вычисление и сознательное мышление 37
- 1.3. Вычисление и сознательное мышление 39
- 1.4. Физикализм и ментализм 41
- 1.4. Физикализм и ментализм
- 1.5. Вычисление: нисходящие и восходящие процедуры
- 1.5. Вычисление: нисходящие и восходящие процедуры 43
- 1.5. Вычисление: нисходящие и восходящие процедуры 45
- 1.7. Хаос
- 1.7. Хаос 49
- 1.7. Хаос 51
- 1.8. Аналоговые вычисления
- 1.8. Аналоговые вычисления 53
- 1.8. Аналоговые вычисления 55
- 1.9. Невычислительные процессы
- 1.9. Невычислительные процессы 57
- 1.9. Невычислительные процессы 59
- 1.9. Невычислительные процессы
- Глава I
- 1.9. Невычислительные процессы 65
- Глава I
- 1.10. Завтрашний день
- 1.10. Завтрашний день 67
- Глава I
- 1.11. Обладают ли компьютеры правами и несут ли ответственность?
- 1.12. "Осознание", "понимание", "сознание", "интеллект" 71
- 1.12. "Осознание", "понимание", "сознание", "интеллект"
- 1.12. "Осознание", "понимание", "сознание", "интеллект" 73
- 1.12. "Осознание", "понимание", "сознание", "интеллект" 75
- 1.13. Доказательство Джона Серла 77
- 1.13. Доказательство Джона Серла
- 1.14. Некоторые проблемы вычислительной модели 79
- 1.14. Некоторые проблемы вычислительной модели 81
- Глава I
- 1.16. Доказательство на основании теоремы Гёделя 89
- 1.17. Платонизм или мистицизм?
- 1.17. Платонизм или мистицизм? 91
- 1.18. Почему именно математическое понимание?
- 1.18. Почему именно математическое понимание? 93
- 1.19. Какое отношение имеет теорема Гёделя к "бытовым" действиям?
- 1.20. Мысленная визуализация и виртуальная реальность 101
- 1.20. Мысленная визуализация и виртуальная реальность 103
- 2.1. Теорема Гёделя и машины Тьюринга
- 2.1. Теорема Гёделя и машины Тьюринга 113
- 2.2. Вычисления
- 2.2. Вычисления 115
- 2.3. Незавершающиеся вычисления
- Глава 2
- 2.6. Возможные формальные возражения против & 129
- 2.6. Возможные формальные возражения против
- 2.6. Возможные формальные возражения против & 133
- 2.6. Возможные формальные возражения против 135
- 2.6. Возможные формальные возражения против 137
- 2.6. Возможные формальные возражения против 139
- 2.6. Возможные формальные возражения против 141
- 2.6. Возможные формальные возражения против 143
- 2.8. Условие -непротиворечивости 151
- 2.8. Условие -непротиворечивости
- 2.8. Условие -непротиворечивости 153
- 2.9. Формальные системы и алгоритмическое доказательство
- 2.10. Возможные формальные возражения против (продолжение)
- 2.10. Возможные формальные возражения против 159
- 2.10. Возможные формальные возражения против 161
- 2.10. Возможные формальные возражения против 165
- 2.10. Возможные формальные возражения против 167
- 2.10. Возможные формальные возражения против 169
- 2.10. Возможные формальные возражения против 171
- 2.10. Возможные формальные возражения против 173
- 2.10. Возможные формальные возражения против 175
- 2.10. Возможные формальные возражения против 177
- 2.10. Возможные формальные возражения против 179
- 2.10. Возможные формальные возражения против 181
- 2.10. Возможные формальные возражения против 183
- 2.10. Возможные формальные возражения против 185
- 2.10. Возможные формальные возражения против 187
- 2.10. Возможные формальные возражения против 189
- 2.10. Возможные формальные возражения против 191
- 3.1. Гёдель и Тьюринг
- 3.1. Гёдель и Тьюринг 207
- 3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?
- 3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание?
- 3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом?
- 3.5. Может ли алгоритм быть непознаваемым?
- 3.5. Может ли алгоритм быть непознаваемым? 231
- 3.5. Может ли алгоритм быть непознаваемым? 233
- 3.6. Естественный отбор или промысел Господень?
- 3.6. Естественный отбор или промысел Господень? 235
- 3.7. Алгоритм или алгоритмы?
- 3.7. Алгоритм или алгоритмы? 237
- 3.9. Алгоритмы обучения 243
- 3.9. Алгоритмы обучения
- 3.9. Алгоритмы обучения 245
- 3.11. Как обучаются роботы? 249
- 3.11. Как обучаются роботы?
- 3.11. Как обучаются роботы? 251
- 3.13. Механизмы математического поведения робота 257
- 3.13. Механизмы математического поведения робота 259
- 3.14. Фундаментальное противоречие 261
- 3.14. Фундаментальное противоречие
- 3.14. Фундаментальное противоречие 263
- 3.15. Способы устранения фундаментального противоречия
- 3.16. Необходимо ли роботу верить в механизмы м?
- 3.16. Необходимо ли роботу верить в механизмы м? 267
- 3.16. Необходимо ли роботу верить в механизмы м? 269
- 3.17. Робот ошибается и робот "имеет в виду"?
- 3.17. Робот ошибается и робот "имеет в виду"? 271
- 3.19. Исключение ошибочных -утверждений 275
- 3.19. Исключение ошибочных -утверждений
- 3.21. Окончателен ли приговор?
- 3.21. Окончателен ли приговор? 285
- 3.22. Спасет ли вычислительную модель разума хаос? 287
- 3.23. Reductio ad absurdum - воображаемый диалог 291
- 3.23. Reductio ad absurdum - воображаемый диалог 293
- 3.23. Reductio ad absurdum - воображаемый диалог 295
- 3.23. Reductio ad absurdum - воображаемый диалог 297
- 3.23. Reductio ad absurdum - воображаемый диалог 301
- 3.24. Не парадоксальны ли наши рассуждения?
- 3.24. Не парадоксальны ли наши рассуждения? 305
- 3.24. Не парадоксальны ли наши рассуждения? 307
- 3.25. Сложность в математических доказательствах 309
- 3.25. Сложность в математических доказательствах
- 3.25. Сложность в математических доказательствах 311
- 3.26. Разрыв вычислительных петель 313
- 3.26. Разрыв вычислительных петель
- 3.26. Разрыв вычислительных петель 315
- 3.26. Разрыв вычислительных петель 317
- 3.27. Вычислительная математика: процедуры нисходящие или восходящие?
- 3.28. Заключение
- 3.28. Заключение 323
- 3.28. Заключение 325
- 3.28. Заключение 327
- 3.28. Заключение 329
- 3.28. Заключение 331
- 3.28. Заключение 333
- 3.28. Заключение 335
- Часть II
- 4.1. Разум и физические законы
- 4.1. Разум и физические законы 341
- 4.2. Вычислимость и хаос в современной физике
- 4.2. Вычислимость и хаос в современной физике 343
- 4.4. Эйнштейнов наклон 345
- 4.4. Эйнштейнов наклон
- 4.4. Эйнштейнов наклон 347
- 4.4. Эйнштейнов наклон
- 4.4. Эйнштейнов наклон
- 4.4. Эйнштейнов наклон
- 4.4. Эйнштейнов наклон 355
- Глава 4
- 4.4. Эйнштейнов наклон
- 4.4. Эйнштейнов наклон 359
- 4.5. Вычисления и физика
- 4.5. Вычисления и физика 361
- 4.5. Вычисления и физика 363
- 4.5. Вычисления и физика
- 4.5. Вычисления и физика 367
- 4.5. Вычисления и физика 369
- 4.5. Вычисления и физика 371
- 5.1. Квантовая теория: головоломки и парадоксы
- 5.1. Квантовая теория: головоломки и парадоксы 375
- 5.2. Задача Элитцура - Вайдмана об испытании бомб 377
- 5.3. Магические додекаэдры
- 5.3. Магические додекаэдры
- 5.3. Магические додекаэдры
- 5.3. Магические додекаэдры 383
- 5.3. Магические додекаэдры 385
- Глава 5
- Глава 5
- Глава 5
- 5.6. Основные правила квантовой теории
- 5.6. Основные правила квантовой теории 403
- 5.7. Унитарная эволюция u 405
- 5.7. Унитарная эволюция u
- 5.7. Унитарная эволюция u 407
- 5.7. Унитарная эволюция u 409
- Глава 5
- 5.8. Редукция r вектора состояния
- 5.8. Редукция r вектора состояния 411
- 5.8. Редукция r вектора состояния 413
- Глава 5
- Глава 5
- 5.10. Квантовая теория спина. Сфера Римана 421
- 5.10. Квантовая теория спина. Сфера Римана
- 5. . Квантовая теория спина. Сфера Римана
- 5.10. Квантовая теория спина. Сфера Римана
- 5.10. Квантовая теория спина. Сфера Римана 427
- Глава 5
- 5.10. Квантовая теория спина. Сфера Римана 429
- 5.12. Гильбертово пространство 433
- 5.12. Гильбертово пространство
- 5. / 2. Гильбертово пространство
- Глава 5
- 5.12. Гильбертово пространство 437
- 5.13. Описание редукции r в терминах гильбертова пространства
- 5.14. Коммутирующие измерения
- 5.15. Квантовомеханическое "и"
- 5.16. Ортогональность произведений состояний
- 5.17. Квантовая сцепленность
- 5.17. Квантовая сцепленность 451
- 5.17. Квантовая сцепленность 453
- 5.17. Квантовая сцепленность 455
- 5.17. Квантовая сцепленность 457
- Глава 5
- 5.18. Объяснение загадки магических додекаэдров
- 5.18. Объяснение загадки магических додекаэдров 459
- 5.18. Объяснение загадки магических додекаэдров 463
- 5.18. Объяснение загадки магических додекаэдров 465
- 6.1. Является ли r реальным процессом?
- 6.1. Является ли r реальным процессом? 475
- 6.1. Является ли r реальным процессом? 477
- 6.2. О множественности миров 479
- 6.2. О множественности миров
- 6.2. О множественности миров 481
- 6.3. Не принимая вектор всерьез
- 6.3. Не принимая вектор всерьез 483
- 6.3. Не принимая вектор всерьез 485
- 6.4. Матрица плотности
- 6.4. Матрица плотности 489
- 6.4. Матрица плотности 491
- 6.4. Матрица плотности 493
- 6.4. Матрица плотности 495
- 6.5. Матрицы плотности для эпр-пар
- 6.5. Матрицы плотности для эпр-пар 497
- 6.6. Fapp-объяснение процедуры r 499
- 6.6. Fapp-объяснение процедуры r
- 6.6. Fapp-объяснение процедуры r 503
- 6.6. Fapp-объяснение процедуры r 505
- 6.7. Fapp-объяснение правила квадратов модулей
- 6.7. Fapp-объяснение правила квадратов модулей 507
- 6.9. А теперь попробуем принять действительно всерьез
- Глава 6
- 6.10. Гравитационная редукция вектора состояния 515
- 6.10. Гравитационная редукция вектора состояния
- 6. 10. Гравитационная редукция вектора состояния 517
- 6.11. Абсолютные единицы 519
- 6.11. Абсолютные единицы
- 6.12. Новый критерий 521
- 6.12, Новый критерий
- 6.12. Новый критерий 523
- 6.12. Новый критерий 525
- 6.12. Новый критерий 527
- 6.12. Новый критерий 529
- 6.12. Новый критерий 531
- 7.2. Нейроны, синапсы и компьютеры
- 7.2. Нейроны, синапсы и компьютеры 541
- 7.2. Нейроны, синапсы и компьютеры 543
- 7.3. Квантовые вычисления
- 7.3. Квантовые вычисления 545
- 7.4. Цитоскелет и микротрубочки 547
- 7.4. Цитоскелет и микротрубочки
- 7.4. Цитоскелет и микротрубочки 549
- Глава 7
- 7.4. Цитоскелет и микротрубочки
- Глава 7
- 7.4. Цитоскелет и микротрубочки 553
- Глава 7
- 7.4. Цитоскелет и микротрубочки
- Глава 7
- 7.4. Цитоскелет и микротрубочки 557
- 7.4. Цитоскелет и микротрубочки
- 7.5. Квантовая когерентность внутри микротрубочек 561
- 7.5. Квантовая когерентность внутри микротрубочек
- 7.5. Квантовая когерентность внутри микротрубочек 563
- 7.6. Микротрубочки и сознание
- 7.6. Микротрубочки и сознание 565
- 7.7. Модель разума
- 7.7. Модель разума 569
- 7.7. Модель разума 571
- 7.7. Модель разума 573
- 7.8. Невычислимость в квантовой гравитации (1)
- 7.8. Невычислимость в квантовой гравитации (1) 577
- 7.9. Машины с оракулом и физические законы
- 7.9. Машины с оракулом и физические законы 579
- 7.10. Невычислимость в квантовой гравитации (2) 581
- 7.10. Невычислимость в квантовой гравитации (2)
- 7.10. Невычислимость в квантовой гравитации (2) 583
- 7.11. Время и сознательное восприятие
- 7.11. Время и сознательное восприятие 585
- Глава 7
- 7.11. Время и сознательное восприятие 587
- 7.11. Время и сознательное восприятие 589
- 8.1. Искусственные разумные "устройства"
- 8.1. Искусственные разумные "устройства" 599
- 8.1. Искусственные разумные "устройства" 601
- 8.2. Что компьютеры умеют делать хорошо... И что не очень
- 8.3. Эстетика и т. Д.
- 8.4. Опасности компьютерных технологий
- 8.4. Опасности компьютерных технологий 611
- 8.5. Неправильные выборы 613
- 8.5. Неправильные выборы
- 8.5. Неправильные выборы 615
- 8.6. Физический феномен сознания 617
- 8.6. Физический феномен сознания
- 8.6. Физический феномен сознания 619
- 8.6. Физический феномен сознания 621
- 8.6. Физический феномен сознания 623
- 8.7. Три мира и три загадки 625
- 8.7. Три мира и три загадки
- 8.7. Три мира и три загадки 627
- 8.7. Три мира и три загадки
- 8.7. Три мира и три загадки 631
- 8.7. Три мира и три загадки 633
- 8.7. Три мира и три загадки 635
- 8.7. Три мира и три загадки 637
- 8.7. Три мира и три загадки 639