logo
Пенроуз Р

6.11. Абсолютные единицы 519

ная теория" может порадовать нас лишь фундаментальным пробелом: в случае существенного различия между пространственно-временными геометриями мы не располагаем никакими абсолютными средствами, позволяющими сопоставить точку одной геометрии какой-либо определенной точке другой (поскольку эти геометрии представляют собой строго разделенные пространства), в связи с чем сама идея возможности построения суперпозиции материальных состояний в таких раздельных пространствах представляется крайне сомнительной.

Осталось только выяснить, когда же две геометрии становятся "существенно различными". Вот тут-то на сцену и выходит планковская длина см. Рассуждение выглядит приблизительно так: для того чтобы произошла редукция, масштаб различия между этими геометриями должен составлять, в некотором подходящем смысле, величину порядка см или более. Можно попробовать, например, представить себе (см. рис. 6.5), что две различные геометрии стремятся, как правило, слиться в одну, однако когда мера их различия становится для такого масштаба слишком велика, происходит редукция R - и вместо того, чтобы поддерживать суперпозицию, предполагаемую эволюцией U, Природа вынуждена выбирать какую-то одну из имеющихся геометрий.

Какой масштаб массы (или расстояния, на которое переместится объект) соответствует столь малому изменению в геометрии пространства-времени? Вообще говоря, именно благодаря малости гравитационных эффектов масштаб этот оказывается величиной довольно-таки значительной и вполне годится на роль демаркационной линии между квантовым и классическим уровнями. Для придания картине большей наглядности, необходимо еще сказать несколько слов о так называемых абсолютных (или планковских) единицах.