2.10. Возможные формальные возражения против 175
го места, смею надеяться, уже ясно, что возможные ошибки подобного рода существенной роли здесь не играют. Помните, что говорил Фейнман?
Что же касается собственно моих спецификаций, следует упомянуть еще один формальный момент. Представленный мною в §2.5 вариант доказательства Гёделя(-Тьюринга) опирается не на непротиворечивость системы F, а на обоснованность алгоритма А, и являет собой критерий для установления незавер-шаемости вычислений (т. е. истинности -высказываний). Этот вариант подходит нам ничуть не хуже любых других, поскольку известно, что из обоснованности алгоритма А следует истинность утверждения о незавершаемости вычисления Ck (k), каковое явное утверждение (тоже -высказывание) мы имеем полное право использовать вместо высказывания G (F). Более того, как отмечалось выше (см. §2.8), доказательство, вообще говоря, зависит не от непротиворечивости формальной системы F, а от ее -непротиворечивости. Из обоснованности системы F очевидно следует ее непротиворечивость, равно как и -непротиворечивость. Если допустить, что система F обоснованна, то ни , ни G(F) из ее правил (см. §2.8) не следуют, однако оба эти высказывания являются истинными.
Думаю, можно с уверенностью заключить, что какое бы "постепенное размывание" убежденности того или иного математика ни сопровождало переход от убеждения в обоснованности формальной системы F к убеждению в истинности высказывания G(F) (или ), оно будет целиком и полностью обусловлено возможностью ошибки в точной формулировке полученного им высказывания "G(F)>>. (To же применимо и к высказыванию f2(F).) Все это не имеет непосредственного отношения к настоящему обсуждению - при наличии подлинной (не случайной) формулировки высказывания G(F) никакого размывания убежденности происходить не должно. Если формальная система F неопровержимо обоснованна, то ее высказывание G (F) столь же неопровержимо истинно. Все формы заключения
остаются неизменными при условии, что под "истинностью" подразумевается "неопровержимая истинность".
Q14. Нет никаких сомнений в том, что формальная система ZF - или некоторая стандартная ее модификация (обозначим ее через ZF*) -действитель-
176 Глава 2
но включает в себя все необходимое для серьезной математической деятельности. Почему бы просто не принять эту систему за основу, смириться с недоказуемостью ее непротиворечивости и продолжить свои математические изыскания?
Полагаю, такая точка зрения весьма и весьма распространена среди практикующих математиков, особенно тех, кто не слишком углубляется в фундаментальные основы или философию своего предмета. Подобное отношение вполне естественно для людей, главной заботой которых является просто хорошее выполнение серьезной, пусть и математической, работы (хотя в действительности такие люди крайне редко выражают свои результаты в рамках строгих правил формальных систем, подобных ZF). Согласно этой точке зрения, математика имеет дело лишь с тем, что можно доказать или опровергнуть в рамках некоей конкретной формальной системы - такой, например, как ZF (или какая-либо ее модификация ZF*). С высоты такой позиции математическая деятельность и в самом деле напоминает своего рода "игру". Назовем ее ZF-игрой (или ZF*-игрой), причем играть в эту игру следует в соответствии с правилами, установленными в рамках данной системы. Такой подход характерен для формалиста, подлинный же формалист мыслит исключительно в терминах ИСТИННОГО и ЛОЖНОГО, которые не обязательно совпадают с истинным и ложным в их повседневном смысле. Если формальная система обоснованна, то все, что является истинным, и будет истинным, а все, что ЛОЖНО, будет ложным. Однако наверняка найдутся высказывания, формализуемые в рамках данной системы, которые, будучи истинными, не являются ИСТИННЫМИ, и другие, которые, будучи ложными, не являются ЛОЖНЫМИ, иными словами, в обоих случаях эти высказывания оказываются НЕРАЗРЕШИМЫМИ. Если система ZF непротиворечива, то в ZF-игре гёделевское высказывание9 G(ZF) и его отрицание ~G(ZF) принадлежат, соответственно, к этим двум категориям. (Более того, окажись система ZF противоречивой, то и высказывание G(ZF), и его отрицание ~G(ZF) были бы ИСТИННЫМИ и ложными одновременно!)
9Как и ранее, обозначение G (F) можно без каких бы то ни было последствий заменить на . То же справедливо и для комментариев к Q15-Q20.
- Пенроуз р. Тени разума: в поисках науки о сознании. 1994
- Часть I. Почему для понимания разума необходима новая физика?
- Глава 1. Сознание и вычисление 27
- Глава 2. Гёделевское доказательство 111
- Глава 3. О невычислимости в математическом мышлении 206
- Часть II. Новая физика, необходимая для понимания разума в поисках невычислительной физики разума
- Глава 4. Есть ли в классической физике место разуму? 339
- Глава 5. Структура квантового мира 373
- Глава 6. Квантовая теория и реальность 474
- Глава 7. Квантовая теория и мозг 534
- Глава 8. Возможные последствия 598
- Часть I
- Часть I
- 1.1. Разум и наука
- 1.2. Спасут ли роботы этот безумный мир?
- 1.2. Спасут ли роботы этот безумный мир? 31
- 1.2. Спасут ли роботы этот безумный мир? 33
- 1.3. Вычисление и сознательное мышление
- 1.3. Вычисление и сознательное мышление 35
- 1.3. Вычисление и сознательное мышление 37
- 1.3. Вычисление и сознательное мышление 39
- 1.4. Физикализм и ментализм 41
- 1.4. Физикализм и ментализм
- 1.5. Вычисление: нисходящие и восходящие процедуры
- 1.5. Вычисление: нисходящие и восходящие процедуры 43
- 1.5. Вычисление: нисходящие и восходящие процедуры 45
- 1.7. Хаос
- 1.7. Хаос 49
- 1.7. Хаос 51
- 1.8. Аналоговые вычисления
- 1.8. Аналоговые вычисления 53
- 1.8. Аналоговые вычисления 55
- 1.9. Невычислительные процессы
- 1.9. Невычислительные процессы 57
- 1.9. Невычислительные процессы 59
- 1.9. Невычислительные процессы
- Глава I
- 1.9. Невычислительные процессы 65
- Глава I
- 1.10. Завтрашний день
- 1.10. Завтрашний день 67
- Глава I
- 1.11. Обладают ли компьютеры правами и несут ли ответственность?
- 1.12. "Осознание", "понимание", "сознание", "интеллект" 71
- 1.12. "Осознание", "понимание", "сознание", "интеллект"
- 1.12. "Осознание", "понимание", "сознание", "интеллект" 73
- 1.12. "Осознание", "понимание", "сознание", "интеллект" 75
- 1.13. Доказательство Джона Серла 77
- 1.13. Доказательство Джона Серла
- 1.14. Некоторые проблемы вычислительной модели 79
- 1.14. Некоторые проблемы вычислительной модели 81
- Глава I
- 1.16. Доказательство на основании теоремы Гёделя 89
- 1.17. Платонизм или мистицизм?
- 1.17. Платонизм или мистицизм? 91
- 1.18. Почему именно математическое понимание?
- 1.18. Почему именно математическое понимание? 93
- 1.19. Какое отношение имеет теорема Гёделя к "бытовым" действиям?
- 1.20. Мысленная визуализация и виртуальная реальность 101
- 1.20. Мысленная визуализация и виртуальная реальность 103
- 2.1. Теорема Гёделя и машины Тьюринга
- 2.1. Теорема Гёделя и машины Тьюринга 113
- 2.2. Вычисления
- 2.2. Вычисления 115
- 2.3. Незавершающиеся вычисления
- Глава 2
- 2.6. Возможные формальные возражения против & 129
- 2.6. Возможные формальные возражения против
- 2.6. Возможные формальные возражения против & 133
- 2.6. Возможные формальные возражения против 135
- 2.6. Возможные формальные возражения против 137
- 2.6. Возможные формальные возражения против 139
- 2.6. Возможные формальные возражения против 141
- 2.6. Возможные формальные возражения против 143
- 2.8. Условие -непротиворечивости 151
- 2.8. Условие -непротиворечивости
- 2.8. Условие -непротиворечивости 153
- 2.9. Формальные системы и алгоритмическое доказательство
- 2.10. Возможные формальные возражения против (продолжение)
- 2.10. Возможные формальные возражения против 159
- 2.10. Возможные формальные возражения против 161
- 2.10. Возможные формальные возражения против 165
- 2.10. Возможные формальные возражения против 167
- 2.10. Возможные формальные возражения против 169
- 2.10. Возможные формальные возражения против 171
- 2.10. Возможные формальные возражения против 173
- 2.10. Возможные формальные возражения против 175
- 2.10. Возможные формальные возражения против 177
- 2.10. Возможные формальные возражения против 179
- 2.10. Возможные формальные возражения против 181
- 2.10. Возможные формальные возражения против 183
- 2.10. Возможные формальные возражения против 185
- 2.10. Возможные формальные возражения против 187
- 2.10. Возможные формальные возражения против 189
- 2.10. Возможные формальные возражения против 191
- 3.1. Гёдель и Тьюринг
- 3.1. Гёдель и Тьюринг 207
- 3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?
- 3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание?
- 3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом?
- 3.5. Может ли алгоритм быть непознаваемым?
- 3.5. Может ли алгоритм быть непознаваемым? 231
- 3.5. Может ли алгоритм быть непознаваемым? 233
- 3.6. Естественный отбор или промысел Господень?
- 3.6. Естественный отбор или промысел Господень? 235
- 3.7. Алгоритм или алгоритмы?
- 3.7. Алгоритм или алгоритмы? 237
- 3.9. Алгоритмы обучения 243
- 3.9. Алгоритмы обучения
- 3.9. Алгоритмы обучения 245
- 3.11. Как обучаются роботы? 249
- 3.11. Как обучаются роботы?
- 3.11. Как обучаются роботы? 251
- 3.13. Механизмы математического поведения робота 257
- 3.13. Механизмы математического поведения робота 259
- 3.14. Фундаментальное противоречие 261
- 3.14. Фундаментальное противоречие
- 3.14. Фундаментальное противоречие 263
- 3.15. Способы устранения фундаментального противоречия
- 3.16. Необходимо ли роботу верить в механизмы м?
- 3.16. Необходимо ли роботу верить в механизмы м? 267
- 3.16. Необходимо ли роботу верить в механизмы м? 269
- 3.17. Робот ошибается и робот "имеет в виду"?
- 3.17. Робот ошибается и робот "имеет в виду"? 271
- 3.19. Исключение ошибочных -утверждений 275
- 3.19. Исключение ошибочных -утверждений
- 3.21. Окончателен ли приговор?
- 3.21. Окончателен ли приговор? 285
- 3.22. Спасет ли вычислительную модель разума хаос? 287
- 3.23. Reductio ad absurdum - воображаемый диалог 291
- 3.23. Reductio ad absurdum - воображаемый диалог 293
- 3.23. Reductio ad absurdum - воображаемый диалог 295
- 3.23. Reductio ad absurdum - воображаемый диалог 297
- 3.23. Reductio ad absurdum - воображаемый диалог 301
- 3.24. Не парадоксальны ли наши рассуждения?
- 3.24. Не парадоксальны ли наши рассуждения? 305
- 3.24. Не парадоксальны ли наши рассуждения? 307
- 3.25. Сложность в математических доказательствах 309
- 3.25. Сложность в математических доказательствах
- 3.25. Сложность в математических доказательствах 311
- 3.26. Разрыв вычислительных петель 313
- 3.26. Разрыв вычислительных петель
- 3.26. Разрыв вычислительных петель 315
- 3.26. Разрыв вычислительных петель 317
- 3.27. Вычислительная математика: процедуры нисходящие или восходящие?
- 3.28. Заключение
- 3.28. Заключение 323
- 3.28. Заключение 325
- 3.28. Заключение 327
- 3.28. Заключение 329
- 3.28. Заключение 331
- 3.28. Заключение 333
- 3.28. Заключение 335
- Часть II
- 4.1. Разум и физические законы
- 4.1. Разум и физические законы 341
- 4.2. Вычислимость и хаос в современной физике
- 4.2. Вычислимость и хаос в современной физике 343
- 4.4. Эйнштейнов наклон 345
- 4.4. Эйнштейнов наклон
- 4.4. Эйнштейнов наклон 347
- 4.4. Эйнштейнов наклон
- 4.4. Эйнштейнов наклон
- 4.4. Эйнштейнов наклон
- 4.4. Эйнштейнов наклон 355
- Глава 4
- 4.4. Эйнштейнов наклон
- 4.4. Эйнштейнов наклон 359
- 4.5. Вычисления и физика
- 4.5. Вычисления и физика 361
- 4.5. Вычисления и физика 363
- 4.5. Вычисления и физика
- 4.5. Вычисления и физика 367
- 4.5. Вычисления и физика 369
- 4.5. Вычисления и физика 371
- 5.1. Квантовая теория: головоломки и парадоксы
- 5.1. Квантовая теория: головоломки и парадоксы 375
- 5.2. Задача Элитцура - Вайдмана об испытании бомб 377
- 5.3. Магические додекаэдры
- 5.3. Магические додекаэдры
- 5.3. Магические додекаэдры
- 5.3. Магические додекаэдры 383
- 5.3. Магические додекаэдры 385
- Глава 5
- Глава 5
- Глава 5
- 5.6. Основные правила квантовой теории
- 5.6. Основные правила квантовой теории 403
- 5.7. Унитарная эволюция u 405
- 5.7. Унитарная эволюция u
- 5.7. Унитарная эволюция u 407
- 5.7. Унитарная эволюция u 409
- Глава 5
- 5.8. Редукция r вектора состояния
- 5.8. Редукция r вектора состояния 411
- 5.8. Редукция r вектора состояния 413
- Глава 5
- Глава 5
- 5.10. Квантовая теория спина. Сфера Римана 421
- 5.10. Квантовая теория спина. Сфера Римана
- 5. . Квантовая теория спина. Сфера Римана
- 5.10. Квантовая теория спина. Сфера Римана
- 5.10. Квантовая теория спина. Сфера Римана 427
- Глава 5
- 5.10. Квантовая теория спина. Сфера Римана 429
- 5.12. Гильбертово пространство 433
- 5.12. Гильбертово пространство
- 5. / 2. Гильбертово пространство
- Глава 5
- 5.12. Гильбертово пространство 437
- 5.13. Описание редукции r в терминах гильбертова пространства
- 5.14. Коммутирующие измерения
- 5.15. Квантовомеханическое "и"
- 5.16. Ортогональность произведений состояний
- 5.17. Квантовая сцепленность
- 5.17. Квантовая сцепленность 451
- 5.17. Квантовая сцепленность 453
- 5.17. Квантовая сцепленность 455
- 5.17. Квантовая сцепленность 457
- Глава 5
- 5.18. Объяснение загадки магических додекаэдров
- 5.18. Объяснение загадки магических додекаэдров 459
- 5.18. Объяснение загадки магических додекаэдров 463
- 5.18. Объяснение загадки магических додекаэдров 465
- 6.1. Является ли r реальным процессом?
- 6.1. Является ли r реальным процессом? 475
- 6.1. Является ли r реальным процессом? 477
- 6.2. О множественности миров 479
- 6.2. О множественности миров
- 6.2. О множественности миров 481
- 6.3. Не принимая вектор всерьез
- 6.3. Не принимая вектор всерьез 483
- 6.3. Не принимая вектор всерьез 485
- 6.4. Матрица плотности
- 6.4. Матрица плотности 489
- 6.4. Матрица плотности 491
- 6.4. Матрица плотности 493
- 6.4. Матрица плотности 495
- 6.5. Матрицы плотности для эпр-пар
- 6.5. Матрицы плотности для эпр-пар 497
- 6.6. Fapp-объяснение процедуры r 499
- 6.6. Fapp-объяснение процедуры r
- 6.6. Fapp-объяснение процедуры r 503
- 6.6. Fapp-объяснение процедуры r 505
- 6.7. Fapp-объяснение правила квадратов модулей
- 6.7. Fapp-объяснение правила квадратов модулей 507
- 6.9. А теперь попробуем принять действительно всерьез
- Глава 6
- 6.10. Гравитационная редукция вектора состояния 515
- 6.10. Гравитационная редукция вектора состояния
- 6. 10. Гравитационная редукция вектора состояния 517
- 6.11. Абсолютные единицы 519
- 6.11. Абсолютные единицы
- 6.12. Новый критерий 521
- 6.12, Новый критерий
- 6.12. Новый критерий 523
- 6.12. Новый критерий 525
- 6.12. Новый критерий 527
- 6.12. Новый критерий 529
- 6.12. Новый критерий 531
- 7.2. Нейроны, синапсы и компьютеры
- 7.2. Нейроны, синапсы и компьютеры 541
- 7.2. Нейроны, синапсы и компьютеры 543
- 7.3. Квантовые вычисления
- 7.3. Квантовые вычисления 545
- 7.4. Цитоскелет и микротрубочки 547
- 7.4. Цитоскелет и микротрубочки
- 7.4. Цитоскелет и микротрубочки 549
- Глава 7
- 7.4. Цитоскелет и микротрубочки
- Глава 7
- 7.4. Цитоскелет и микротрубочки 553
- Глава 7
- 7.4. Цитоскелет и микротрубочки
- Глава 7
- 7.4. Цитоскелет и микротрубочки 557
- 7.4. Цитоскелет и микротрубочки
- 7.5. Квантовая когерентность внутри микротрубочек 561
- 7.5. Квантовая когерентность внутри микротрубочек
- 7.5. Квантовая когерентность внутри микротрубочек 563
- 7.6. Микротрубочки и сознание
- 7.6. Микротрубочки и сознание 565
- 7.7. Модель разума
- 7.7. Модель разума 569
- 7.7. Модель разума 571
- 7.7. Модель разума 573
- 7.8. Невычислимость в квантовой гравитации (1)
- 7.8. Невычислимость в квантовой гравитации (1) 577
- 7.9. Машины с оракулом и физические законы
- 7.9. Машины с оракулом и физические законы 579
- 7.10. Невычислимость в квантовой гравитации (2) 581
- 7.10. Невычислимость в квантовой гравитации (2)
- 7.10. Невычислимость в квантовой гравитации (2) 583
- 7.11. Время и сознательное восприятие
- 7.11. Время и сознательное восприятие 585
- Глава 7
- 7.11. Время и сознательное восприятие 587
- 7.11. Время и сознательное восприятие 589
- 8.1. Искусственные разумные "устройства"
- 8.1. Искусственные разумные "устройства" 599
- 8.1. Искусственные разумные "устройства" 601
- 8.2. Что компьютеры умеют делать хорошо... И что не очень
- 8.3. Эстетика и т. Д.
- 8.4. Опасности компьютерных технологий
- 8.4. Опасности компьютерных технологий 611
- 8.5. Неправильные выборы 613
- 8.5. Неправильные выборы
- 8.5. Неправильные выборы 615
- 8.6. Физический феномен сознания 617
- 8.6. Физический феномен сознания
- 8.6. Физический феномен сознания 619
- 8.6. Физический феномен сознания 621
- 8.6. Физический феномен сознания 623
- 8.7. Три мира и три загадки 625
- 8.7. Три мира и три загадки
- 8.7. Три мира и три загадки 627
- 8.7. Три мира и три загадки
- 8.7. Три мира и три загадки 631
- 8.7. Три мира и три загадки 633
- 8.7. Три мира и три загадки 635
- 8.7. Три мира и три загадки 637
- 8.7. Три мира и три загадки 639