logo
Пенроуз Р

1.20. Мысленная визуализация и виртуальная реальность 101

оказаться суждение, которое необходимо принимать как истинное, пусть даже оно само по себе вовсе и не очевидно.

Кое-кто, наверное, уже вообразил, что в таком случае можно раз и навсегда составить список всех "возможных" этапов умозаключений и тогда всякое доказательство можно будет свести к вычислению, т. е. к простым механическим манипуляциям полученными очевидными этапами. Доказательство Гёделя (§2.5) как раз и демонстрирует невозможность реализации такой процедуры. Нельзя совершенно избавиться от необходимости в новых "очевидно понимаемых" отношениях. Таким образом, математическое понимание никоим образом не сводится к бездумному вычислению.

1.20. Мысленная визуализация и виртуальная

реальность

Интуитивные математические процедуры, описанные в § 1.19, имеют весьма ярко выраженный специфический геометрический характер. В математических доказательствах применяются и многие другие типы интуитивных процедур, причем некоторые из них весьма далеки от "геометричности". Однако, как показывает практика, геометрические интуитивные представления чаще всего дают более глубокое математическое понимание. Полагаю, было бы весьма полезно выяснить, какие же именно физические процессы происходят в нашем мозге, когда мы визуализируем что-либо геометрически. Начнем хотя бы с того, что никакой логической необходимости в том, чтобы непосредственным результатом этих процессов было "геометрическое отражение" визуализируемого объекта, по сути дела, не существует. Как мы увидим далее, здесь может получиться нечто совсем иное.

Здесь уместно провести аналогию с феноменом, именуемым "виртуальной реальностью". Феномен этот, согласно распространенному мнению, имеет самое прямое отношение к теме "визуализации". Методы виртуальной реальности позволяют создать компьютерную модель какой-либо не существующей в природе структуры, - например, здания на стадии архитектурного проекта, - затем модель проецируется в глаз наблюдателя-человека, который, предположительно, воспринимает ее как "реальное" здание. Совершая движения глазами, головой или, мо-

102 Глава I

жет быть, ногами, словно прогуливаясь вокруг демонстрируемого ему здания, наблюдатель может разглядывать его с разных сторон - точно так же, как если бы здание действительно было реальным (см. рис. 1.8). Согласно некоторым предположениям , выполняемые мозгом в процессе сознательной визуализации операции (какой бы ни была их истинная природа) аналогичны вычислениям, производимым при построении такой виртуальной модели. В самом деле, мысленно осматривая какую-то реально существующую неподвижную структуру, человек, по всей видимости, создает в уме некую модель, которая остается неизменной, несмотря на постоянные движения его головы, глаз и тела, приводящие к непрерывной смене образов, возникающих на сетчатке его глаз. Такие поправки на движения тела играют весьма существенную роль при построении виртуальной реальности, и высказывались предположения в том смысле, что нечто подобное должно происходить и при создании "мысленных моделей", представляющих собой результаты актов визуализации. Такие вычисления, разумеется, вовсе не обязаны иметь целью воспроизведение реальной геометрической структуры моделируемой конструкции (или ее "отражение"). Сторонникам точки зрения в таком случае пришлось бы рассматривать сознательную визуализацию как результат своего рода численного моделирования окружающего мира в голове человека. Я же полагаю, что всякий раз, когда мы сознательно воспринимаем ту или иную визуальную сцену, сопровождающее этот процесс понимание представляет собой нечто, существенно отличное от моделирования мира методами вычислительного характера.

Можно также предположить, что внутри мозга функционирует нечто вроде "аналогового компьютера", в котором моделирование внешнего мира реализуется не с помощью цифровых вычислений, как в современных электронных компьютерах, а с помощью некоторой внутренней структуры, физическое поведение которой каким-то однозначным образом отражает поведение моделируемой внешней системы. Допустим, например, что нам необходимо аналоговое устройство для моделирования движений некоторого внешнего твердого тела. Для создания такого устройства мы, очевидно, воспользуемся весьма простым и естественным способом. Мы отыщем внутри системы реальное физическое тело той же формы (но меньшего размера), что и моделируемый внешний объект; я, разумеется, ни в коем случае не утверждаю,