logo
Пенроуз Р

3.9. Алгоритмы обучения

Дабы не подвергать читателя искушению чересчур поспешно смириться с абсурдностью описанной выше возможности, я должен несколько прояснить картину, на что мне уже, несомненно, указывают сторонники вычислительного подхода. Как уже отмечалось в §3.5, эти самые сторонники имеют в виду не столько алгоритм, который, в известном смысле, "предварительно запрограммирован" на предоставление решений математических проблем, сколько некую вычислительную систему, способную обу-

244 Глава 3

чаться. Такая система может состоять, в основе своей, из "восходящих" компонентов, соединенных по мере необходимости с какими-либо "нисходящими" процедурами (см. § 1.5) .

Возможно, кому-то покажется, что называть "нисходящей" систему, возникшую исключительно в результате слепого давления естественного отбора, не совсем уместно. Этим термином я буду обозначать здесь те аспекты нашей гипотетической алгоритмической процедуры, которые для данного организма зафиксированы генетически и не подвержены изменению под влиянием последующего жизненного опыта или обучения каждого отдельного представителя вида. Хотя упомянутые нисходящие аспекты и не были созданы кем-то или чем-то, обладающим подлинным "знанием" об их предполагаемых функциях и возможностях (речь идет всего лишь о трансляции определенных цепочек ДНК, приводящей к соответствующей активности клеток мозга), они, тем не менее, способны четко обозначить правила, в соответствии с которыми и будет действовать математически активный мозг. Эти нисходящие процедуры снабдят нашу систему теми алгоритмическими операциями, которые составят необходимую фиксированную структуру, в рамках которой, в свою очередь, будут функционировать более гибкие "процедуры обучения" (восходящие).

Какова же природа этих процедур обучения? Вообразим, что наша самообучающаяся система помещена в некоторое внешнее окружение, причем поведение системы внутри этого окружения непрерывно модифицируется под влиянием реакции окружения на ее предыдущие действия. В процессе участвуют, в основном, два фактора. Внешним, фактором является поведение окружения и его реакция на действия системы, а внутренним - изменения в поведении системы в ответ на изменения в окружении. Прежде всего следует решить вопрос об алгоритмической природе внешнего фактора. Мо-

4 На сегодняшний день мы располагаем вполне строгой математической теорией обучения; см. [10]. Однако эта теория имеет отношение больше к сложности, нежели к вычислимости - иными словами, рассматривает вопросы, связанные с производительностью вычислительных машин и объемом их памяти, необходимыми для решения тех или иных проблем; см. НРК, с. 140-145. Создатели теории не делают никаких предположений о том, что такие математически определенные системы обучения могут оказаться способными моделировать процесс приобретения математиком-человеком собственного понятия о "неопровержимой истине".