logo
Пенроуз Р

3.14. Фундаментальное противоречие 261

получить из процедуры Q (М) другую процедуру-такую, например, которая будет эквивалентна Q (M).

Далее, для интерпретации формальной системы Q (M) необходимо каким-то образом устроить так, чтобы на всем протяжении развития робота статус всегда и непременно означал, что удостоенное его утверждение действительно следует полагать неопровержимо доказанным. В отсутствие поступающих от учителя-человека (неважно, в какой форме) внешних данных мы не можем быть уверенными в том, что робот не выработает самостоятельно некий отличный от нашего язык, в котором символ -й-будет иметь совершенно иное значение (либо вовсе окажется бессмысленным). Для того чтобы определение формальной системы Q (M) на языке робота согласовывалось с нашим ее определением, необходимо в процессе обучения робота (например, учителем-человеком) проследить за тем, чтобы присваиваемое символу значение в точности соответствовало тому значению, какое в него вкладываем мы. Необходимо также проследить и за тем, чтобы система обозначений, которой робот фактически пользуется при формулировке своих, скажем, -высказываний, в точности совпадала с аналогичной системой, имеющей хождение у нас (или допускала какое-либо явное преобразование в нашу систему). Если допустить, что механизмы М познаваемы человеком, то из вышесказанного следует, что аксиомы и правила действия формальной системы Q (M) также должны быть познаваемыми. Более того, всякую теорему, выводимую в рамках системы Q (M), следует, в принципе, полагать познаваемой человеком (в том смысле, что мы в состоянии понять ее описание, а не определить в обязательном порядке ее неопровержимую истинность), даже если вычислительные процедуры, необходимые для получения большей части таких теорем, окажутся далеко за пределами невооруженных вычислительных способностей человека.