Замена переменных в двойных и тройных интегралах.
Для вычисления двойного интеграла иногда удобнее перейти в другую систему координат.Замена переменных в двойном интеграле описывается формулой
где выражение представляет собой так называемыйякобиан преобразования , аS − образ области интегрирования R, который можно найти с помощью подстановки в определение областиR. Отметим, что в приведенной выше формуле означает абсолютное значение соответствующего определителя.Предполагая, что преобразование координат является взаимно-однозначным, обратное соотношение описывается якобианом
при условии, что знаменатель нигде не равен 0. Итак, замена переменных в двойном интеграле производится с помощью следующих трех шагов:
Найти образ Sв новой системе координатдля исходной области интегрированияR;
Вычислить якобиан преобразования и записать дифференциал в новых переменных;
Заменить в подынтегральном выражении исходные переменные xиy, выполнив, соответственно, подстановкии.
При вычислении тройного интеграла, как и двойного, часто удобно сделать замену переменных. Пусть исходный тройной интеграл задан в декартовых координатах x, y, z в области U:
Требуется вычислить данный интеграл в новых координатах u, v, w. Взаимосвязь старых и новых координат описывается соотношениями:
Предполагается, что выполнены следующие условия:
Функции φ, ψ, χ непрерывны вместе со своими частными производными;
Существует взаимно-однозначное соответствие между точками области интегрирования U в пространстве xyz и точками области U' в пространстве uvw;
Якобиан преобразования I (u,v,w), равный
отличен от нуля и сохраняет постоянный знак всюду в области интегрирования U.
Тогда формула замены переменных в тройном интеграле записывается в виде:
В приведенном выражении означает абсолютное значение якобиана.
- Вопросы для подготовки к экзамену по дисциплине «Высшая математика» (II семестр) тема 1. Дифференциальное исчисление функции одной переменной.
- Непрерывность функции одной переменной, имеющей конечную производную.
- Уравнение касательной и нормали к графику.
- Теоремы о производной суммы, разности, произведения и частного двух функций одной переменной.
- Производная сложной функции.
- Производная обратной функции.
- Производные функций, заданных неявно и параметрически.
- Дифференцируемость и дифференциал функции. Геометрический смысл дифференциала.
- Основные теоремы дифференциального исчисления: теоремы Ролля, Лагранжа, Коши.
- Правило Лопиталя.
- Теоремы о необходимом и достаточном условии существования точек перегиба.
- Асимптоты кривой.
- Тема 3. Дифференцирование функций нескольких переменных.
- Частные производные и полный дифференциал функции двух переменных.
- Частные производные и дифференциалы высших порядков функции двух переменных.
- Дифференцирование сложной функции.
- Понятие экстремума функции двух переменных.
- Необходимое условие экстремума функции двух переменных.
- Наибольшее и наименьшее значения функции в замкнутой области.
- Тема 4. Неопределённый интеграл.
- Интегрирование иррациональных функций.
- Дифференциальный бином.
- Интегрирование тригонометрических функций.
- Тема 5. Определённый интеграл.
- Задачи, приводящие к понятию определённого интеграла. Определённый интеграл как предел интегральных сумм.
- Основные свойства определённого интеграла.
- Вычисление длин дуг плоских кривых.
- Тема 6. Несобственные интегралы.
- Несобственные интегралы с бесконечными пределами. Признаки сходимости.
- Несобственные интегралы от неограниченных функций. Признаки сходимости.
- Тема 7. Двойные и тройные интегралы.
- Двойные интегралы. Изменение порядка интегрирования.
- Вычисление двойных интегралов.
- Тройные интегралы и их вычисление.
- Замена переменных в двойных и тройных интегралах.
- Криволинейные интегралы.