Несобственные интегралы с бесконечными пределами. Признаки сходимости.
Пусть f (x) является непрерывной функцией в интервале [a, ∞). Несобственный интеграл определяется через предел следующим образом:
Рассмотрим также случай, когда функция f (x) непрерывна в интервале (−∞, b]. В этом случае несобственный интеграл определяется как
Если указанные выше пределы существуют и конечны, то говорят что несобственные интегралы сходятся. В противном случае интегралы расходятся. Пусть f (x) является непрерывной функцией на множестве действительных чисел. Тогда справедливо соотношение
Если для некоторого действительного числа c оба интеграла в правой части сходятся, то говорят, что интеграл также сходится; в противном случае он расходится.
Признаки сходимости.
Пусть f (x) и g (x) является непрерывными функциями в интервале [a, ∞). Предположим, что для всех x в интервале [a, ∞).
Если сходится, тотакже сходится;
Если расходится, тотакже расходится;
Если сходится, тотакже сходится. В этом случае говорят, что интегралявляетсяабсолютно сходящимся.
-
Yandex.RTB R-A-252273-3
Содержание
- Вопросы для подготовки к экзамену по дисциплине «Высшая математика» (II семестр) тема 1. Дифференциальное исчисление функции одной переменной.
- Непрерывность функции одной переменной, имеющей конечную производную.
- Уравнение касательной и нормали к графику.
- Теоремы о производной суммы, разности, произведения и частного двух функций одной переменной.
- Производная сложной функции.
- Производная обратной функции.
- Производные функций, заданных неявно и параметрически.
- Дифференцируемость и дифференциал функции. Геометрический смысл дифференциала.
- Основные теоремы дифференциального исчисления: теоремы Ролля, Лагранжа, Коши.
- Правило Лопиталя.
- Теоремы о необходимом и достаточном условии существования точек перегиба.
- Асимптоты кривой.
- Тема 3. Дифференцирование функций нескольких переменных.
- Частные производные и полный дифференциал функции двух переменных.
- Частные производные и дифференциалы высших порядков функции двух переменных.
- Дифференцирование сложной функции.
- Понятие экстремума функции двух переменных.
- Необходимое условие экстремума функции двух переменных.
- Наибольшее и наименьшее значения функции в замкнутой области.
- Тема 4. Неопределённый интеграл.
- Интегрирование иррациональных функций.
- Дифференциальный бином.
- Интегрирование тригонометрических функций.
- Тема 5. Определённый интеграл.
- Задачи, приводящие к понятию определённого интеграла. Определённый интеграл как предел интегральных сумм.
- Основные свойства определённого интеграла.
- Вычисление длин дуг плоских кривых.
- Тема 6. Несобственные интегралы.
- Несобственные интегралы с бесконечными пределами. Признаки сходимости.
- Несобственные интегралы от неограниченных функций. Признаки сходимости.
- Тема 7. Двойные и тройные интегралы.
- Двойные интегралы. Изменение порядка интегрирования.
- Вычисление двойных интегралов.
- Тройные интегралы и их вычисление.
- Замена переменных в двойных и тройных интегралах.
- Криволинейные интегралы.