logo
Осень 13-весна 14 курс 1-2 ОрТОР (сейчас это называют ТОЛААД) / СЕССИЯ / Математика / Otvety_na_ekzamenatsionnye_voprosy_po_vyshmatu_2

Несобственные интегралы с бесконечными пределами. Признаки сходимости.

Пусть f (x) является непрерывной функцией в интервале [a, ∞). Несобственный интеграл определяется через предел следующим образом:

Рассмотрим также случай, когда функция f (x) непрерывна в интервале (−∞, b]. В этом случае несобственный интеграл определяется как

Если указанные выше пределы существуют и конечны, то говорят что несобственные интегралы сходятся. В противном случае интегралы расходятся. Пусть f (x) является непрерывной функцией на множестве действительных чисел. Тогда справедливо соотношение

Если для некоторого действительного числа c оба интеграла в правой части сходятся, то говорят, что интеграл также сходится; в противном случае он расходится.

Признаки сходимости.

Пусть f (x) и g (x) является непрерывными функциями в интервале [a, ∞). Предположим, что для всех x в интервале [a, ∞).

Если сходится, тотакже сходится;

Если расходится, тотакже расходится;

Если сходится, тотакже сходится. В этом случае говорят, что интегралявляетсяабсолютно сходящимся.

  1. Yandex.RTB R-A-252273-3
    Yandex.RTB R-A-252273-4