logo search
Lektsii_po_GA_1_semestr_PI

Способ Феррари

Обозначим корни уравнения через . Положим , , . Легко проверить, что перестановка переменных приводит лишь к некоторой перестановке и поэтому, элементарные симметрические многочлены от являются симметрическими многочленами от . Следовательно, можно написать уравнение третей степени, коэффициенты которого суть многочлены от коэффициентов исходного многочлена, корнями которого являются . Кубическое уравнение называют кубической резольвентой. После нахождения корней , из уравнения ( к нему сводится решение системы , ) находим , из уравнения - , и из уравнения - . Выразив все корни через и подставив выражения в уравнение найдём все корни исходного уравнения.