logo search
математика ответы

3. Определители квадратных матриц. Миноры и алгебраические дополнения элементов квадратных матриц. Вычисление определителей. Свойства определителей.

Определители 2-го и 3-го порядков.

Будем рассматривать квадратные матрицы

Определители являются основными числовыми характеристиками квадратных матриц.

Определителем (детерминантом) матрицы,

состоящей из одного числа , называется само это число.

Определителем матрицы А= второго порядка называется число, равное разности произведений элементов главной и побочной диагоналей:

Рассмотрим матрицу третьего порядка:

Определителем матрицы A третьего порядка называется число

Минором элемента матрицы n-го порядка называется определитель матрицы (n-1)-го порядка, полученный из матрицы А вычеркиванием i-й строки и j-го столбца.

ри выписывании определителя (n-1)-го порядка, в исходном определителе элементы находящиеся под линиями в расчет не принимаются.

Пример 1. Составить минор , полученную из исходной матрицы:

Решение

Алгебраические дополнения

Алгебраическим дополнением Аij элемента аij матрицы n-го порядка называется его минор, взятый со знаком, зависящий от номера строки и номера столбца:

то есть алгебраическое дополнение совпадает с минором, когда сумма номеров строки и столбца – четное число, и отличается от минора знаком, когда сумма номеров строки и столба – нечетное число.

Пример 1. Найти алгебраические дополнения всех элементов матрицы

Решение