Теоремы о пределах. Раскрытие некоторых типов неопределенностей.
Постоянное число а называется пределом последовательности {xn}, если для любого сколь угодно малого положительного числа e существует номер N, что все значения xn, у которых n>N, удовлетворяют неравенству
|xn - a| < e. (6.1)
Записывают это следующим образом:
или xn→ a.
Неравенство (6.1) равносильно двойному неравенству
a- e < xn < a + e, (6.2)
которое означает, что точки x n, начиная с некоторого номера n>N, лежат внутри интервала (a-e, a+e), т.е. попадают в какую угодно малую e-окрестность точки а.
Последовательность, имеющая предел, называется сходящейся, в противном случае - расходящейся.
Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции xn = f(n) целочисленного аргумента n.
Пусть дана функция f(x) и пусть a - предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a. Точка a может принадлежать множеству D(f), а может и не принадлежать ему.
Определение 1. Постоянное число А называется предел функции f(x) при x→a, если для всякой последовательности {xn} значений аргумента, стремящейся к а, соответствующие им последовательности {f(xn)} имеют один и тот же предел А.
Это определение называют определением предел функции по Гейне, или “на языке последовательностей”.
Определение 2. Постоянное число А называется предел функции f(x) при x→a, если, задав произвольное как угодно малое положительное число ε, можно найти такое δ >0 (зависящее от ε), что для всех x, лежащих в ε-окрестности числа а, т.е. для x, удовлетворяющих неравенству
0 < x-a < ε, значения функции f(x) будут лежать в ε-окрестности числа А, т.е. |f(x)-A| < e.
Это определение называют определением предел функции по Коши, или “на языке ε - δ“.
Определения 1 и 2 равносильны. Если функция f(x) при x → a имеет предел, равный А, это записывается в виде
(6.3)
В том случае, если последовательность {f(xn)} неограниченно возрастает (или убывает) при любом способе приближения x к своему пределу а, то будем говорить, что функция f(x) имеет бесконечный предел, и записывать это в виде:
переменная величина (т.е. последовательность или функция), предел которой равен нулю, называется бесконечно малой величиной.
Переменная величина, предел которой равен бесконечности, называется бесконечно большой величиной.
Чтобы найти предел на практике пользуются следующими теоремами.
Теорема 1. Если существует каждый предел
Замечание. Выражения вида 0/0, ∞/∞, ∞-∞, 0*∞, - являются неопределенными, например, отношение двух бесконечно малых или бесконечно больших величин, и найти предел такого вида носит название “раскрытие неопределенностей”.
Yandex.RTB R-A-252273-3
- Основные определения, связанные с матрицами.
- Операции над матрицами: умножение на число, сложение и умножение матриц. Транспонирование матриц.
- 3. Определители квадратных матриц. Миноры и алгебраические дополнения элементов квадратных матриц. Вычисление определителей. Свойства определителей.
- Обратная матрица.
- Системы линейных уравнений. Основные понятия.
- Решение системы из п уравнений с п неизвестными по формуле Крамера и методом обратной матрицы.
- Метод Гаусса.
- Системы линейных однородных уравнений, свойства решений. Фундаментальная система решений. Общее решение.
- Скалярные и векторные величины. Трехмерные векторы. Действия над векторами.
- Свойства линейных операций над векторами.
- Скалярное произведение векторов. Условия параллельности и перпендикулярности векторов.
- Системы координат. Декартова прямоугольная и полярная система координат. Расстояние между двумя точками.
- Уравнение линии на плоскости. Линии первого порядка. Разные формы уравнения прямой. Расстояние от точки до прямой.
- Общее уравнение плоскости в пространстве. Уравнение прямой в пространстве. Расстояние от точки до плоскости.
- Переменные и их пределы. Величины бесконечно малые и бесконечно большие.
- 2. Переменные величины и фу нкции.
- Теоремы о пределах. Раскрытие некоторых типов неопределенностей.
- Замечательные пределы.
- Асимптоты графика функции.
- Производная функции в точке. Геометрический и физический смысл производной. Непрерывность функций, имеющих производную.
- Дифференциал и его геометрический смысл.
- Монотонная функция. Условие монотонности функций.
- Экстремум функции. Необходимое условие экстремума (теорема Ферма). Достаточное условие экстремума.
- Направление вогнутости графика функции. Точки перегиба.
- 1. Нахождение области определения функции.
- Общая схема исследования графика функции.
- Правило Лопиталя.