Системы координат. Декартова прямоугольная и полярная система координат. Расстояние между двумя точками.
Положение любой точки P в пространстве (в частности, на плоскости) может быть определено при помощи той или иной системы координат. Числа, определяющие положение точки, называются координатами этой точки.
Наиболее употребительные координатные системы - декартовы прямоугольные.
Кроме прямоугольных систем координат существуют косоугольные системы. Т.к. я не встречал примеров применения косоугольных систем, то я их не рассматриваю. Прямоугольные и косоугольные координатные системы объединяются под названием декартовых систем координат.
Иногда на плоскости применяют полярные системы координат, а в пространстве - цилиндрические или сферические системы координат.
Обобщением всех перечисленных систем координат являются криволинейные системы координат.
Для задания декартовой прямоугольной системы координат нужно выбрать несколько взаимноперпендикулярных прямых, называемых осями. Точка пересечения осей O называется началом координат.
На каждой оси нужно задать положительное направление и выбрать единицу масштаба. Координаты точки P считаются положительными или отрицательными в зависимости от того, на какую полуось попадает проекция точки P.
Рис. 2: Декартова плоскость
Декартовыми прямоугольными координатами точки P на плоскости называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до двух взаимно перпендикулярных прямых - осей координат или, что то же, проекции радиус-вектора r точки P на две взаимно перпендикулярные координатные оси.
Когда говорят про двухмерную систему коодинат, горизонтальную ось называют осью абсцисс (осью Ox), вертикальную ось - осью ординат (осью Оy). Положительные направления выбирают на оси Ox - вправо, на оси Oy - вверх. Координаты x и y называются соответственно абсциссой и ординатой точки.
Запись P(a,b) означает, что точка P на плоскости имеет абсциссу a и ординату b.
Декартовыми прямоугольными координатами точки P в трехмерном пространстве называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до трех взаимно перпендикулярных координатных плоскостей или, что то же, проекции радиус-вектора r точки P на три взаимно перпендикулярные координатные оси.
В зависимости от взаимного расположения положительных направлений координатных осей возможны левая и правая координатные системы.
Рис.2
Yandex.RTB R-A-252273-3
- Основные определения, связанные с матрицами.
- Операции над матрицами: умножение на число, сложение и умножение матриц. Транспонирование матриц.
- 3. Определители квадратных матриц. Миноры и алгебраические дополнения элементов квадратных матриц. Вычисление определителей. Свойства определителей.
- Обратная матрица.
- Системы линейных уравнений. Основные понятия.
- Решение системы из п уравнений с п неизвестными по формуле Крамера и методом обратной матрицы.
- Метод Гаусса.
- Системы линейных однородных уравнений, свойства решений. Фундаментальная система решений. Общее решение.
- Скалярные и векторные величины. Трехмерные векторы. Действия над векторами.
- Свойства линейных операций над векторами.
- Скалярное произведение векторов. Условия параллельности и перпендикулярности векторов.
- Системы координат. Декартова прямоугольная и полярная система координат. Расстояние между двумя точками.
- Уравнение линии на плоскости. Линии первого порядка. Разные формы уравнения прямой. Расстояние от точки до прямой.
- Общее уравнение плоскости в пространстве. Уравнение прямой в пространстве. Расстояние от точки до плоскости.
- Переменные и их пределы. Величины бесконечно малые и бесконечно большие.
- 2. Переменные величины и фу нкции.
- Теоремы о пределах. Раскрытие некоторых типов неопределенностей.
- Замечательные пределы.
- Асимптоты графика функции.
- Производная функции в точке. Геометрический и физический смысл производной. Непрерывность функций, имеющих производную.
- Дифференциал и его геометрический смысл.
- Монотонная функция. Условие монотонности функций.
- Экстремум функции. Необходимое условие экстремума (теорема Ферма). Достаточное условие экстремума.
- Направление вогнутости графика функции. Точки перегиба.
- 1. Нахождение области определения функции.
- Общая схема исследования графика функции.
- Правило Лопиталя.