Монотонная функция. Условие монотонности функций.
Моното́нная фу́нкция — это функция, приращение которой не меняет знака, то есть либо всегда отрицательная, либо всегда положительная. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной. Монотонная функция — это функция, меняющаяся в одном и том же направлении.
Функция возрастает, если большему значению аргумента соответствует большее значение функции. • Функция убывает, если большему значению аргумента соответствует меньшее значение функции.
Условия монотонности функции:
(Критерий монотонности функции, имеющей производную на интервале) Пусть функция
непрерывна на (a,b), и имеет в каждой точке
производную f'(x). Тогда
f возрастает на (a,b) тогда и только тогда, когда
f убывает на (a,b) тогда и только тогда, когда
Достаточное условие другой монотонности функции, имеющей производную на интервале) Пусть функция
непрерывна на (a,b), и имеет в каждой
производную f'(x). Тогда
если
то f строго возрастает на (a,b);
если
то f строго убывает на (a,b).
Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль. Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале (a,b). Точнее имеет место
(Критерий строгой монотонности функции, имеющей производную на интервале) Пусть
и всюду на интервале определена производная f'(x). Тогда f строго возрастает на интервале (a,b) тогда и только тогда, когда выполнены следующие два условия:
Аналогично, f строго убывает на интервале (a,b) тогда и только тогда, когда выполнены следующие два условия:
-
Yandex.RTB R-A-252273-3
Содержание
- Основные определения, связанные с матрицами.
- Операции над матрицами: умножение на число, сложение и умножение матриц. Транспонирование матриц.
- 3. Определители квадратных матриц. Миноры и алгебраические дополнения элементов квадратных матриц. Вычисление определителей. Свойства определителей.
- Обратная матрица.
- Системы линейных уравнений. Основные понятия.
- Решение системы из п уравнений с п неизвестными по формуле Крамера и методом обратной матрицы.
- Метод Гаусса.
- Системы линейных однородных уравнений, свойства решений. Фундаментальная система решений. Общее решение.
- Скалярные и векторные величины. Трехмерные векторы. Действия над векторами.
- Свойства линейных операций над векторами.
- Скалярное произведение векторов. Условия параллельности и перпендикулярности векторов.
- Системы координат. Декартова прямоугольная и полярная система координат. Расстояние между двумя точками.
- Уравнение линии на плоскости. Линии первого порядка. Разные формы уравнения прямой. Расстояние от точки до прямой.
- Общее уравнение плоскости в пространстве. Уравнение прямой в пространстве. Расстояние от точки до плоскости.
- Переменные и их пределы. Величины бесконечно малые и бесконечно большие.
- 2. Переменные величины и фу нкции.
- Теоремы о пределах. Раскрытие некоторых типов неопределенностей.
- Замечательные пределы.
- Асимптоты графика функции.
- Производная функции в точке. Геометрический и физический смысл производной. Непрерывность функций, имеющих производную.
- Дифференциал и его геометрический смысл.
- Монотонная функция. Условие монотонности функций.
- Экстремум функции. Необходимое условие экстремума (теорема Ферма). Достаточное условие экстремума.
- Направление вогнутости графика функции. Точки перегиба.
- 1. Нахождение области определения функции.
- Общая схема исследования графика функции.
- Правило Лопиталя.