Криволинейные интегралы.
Пусть кривая C описывается векторной функцией, где переменная s представляет собой длину дуги кривой (рисунок 1). Если на кривой C определена скалярная функция F, то интегралназывается криволинейным интегралом первого рода от скалярной функции F вдоль кривой C и обозначается как
Криволинейный интеграл существует, если функция F непрерывна на кривой C.
| ||
Рис.1 |
| Рис.2 |
Свойства криволинейного интеграла первого рода
Интеграл не зависит от ориентации кривой;
Пусть кривая C1 начинается в точке A и заканчивается в точке B, а кривая C2 начинается в точке B и заканчивается в точке D (рисунок 2). Тогда их объединением будет называться кривая C1 U C2, которая проходит от A к B вдоль кривой C1 и затем от B к D вдоль кривой C2. Для криволинейных интегралов первого рода справедливо соотношение
Если гладкая кривая C задана параметрически соотношением и скалярная функция F непрерывна на кривой C, то
Если C является гладкой кривой в плоскости Oxy, заданной уравнением , то
Если гладкая кривая C в плоскости Oxy определена уравнением , то
В полярных координатах интеграл выражается формулой
где кривая C задана в полярных координатах функцией .
Предположим, что кривая C задана векторной функцией , где переменная s − длина дуги кривой. Тогда производная векторной функции
представляет собой единичный вектор, направленный вдоль касательной к данной кривой (рисунок 1). В приведенной выше формуле α, β и γ − углы между касательной и положительными направлениями осей Ox, Oy и Oz, соответственно.
| ||
Рис.1 |
| Рис.2 |
Введем векторную функцию , определенную на кривой C, так, чтобы для скалярной функции
существовал криволинейный интеграл . Такой интегралназывается криволинейным интегралом второго рода от векторной функциивдоль кривой C и обозначается как
Таким образом, по определению,
где − единичный вектор касательной к кривой C. Последнюю формулу можно переписать также в векторной форме:
где . Если кривая C лежит в плоскости Oxy, то полагая R = 0, получаем
Свойства криволинейного интеграла второго рода
Пусть C обозначает кривую с началом в точке A и конечной точкой B. Обозначим через –C кривую противоположного направления - от B к A. Тогда
Если C − объединение кривых C1 и C2 (рисунок 2 выше), то
Если кривая C задана параметрически в виде , то
Если кривая C лежит в плоскости Oxy и задана уравнением (предполагается, что R =0 и t = x), то последняя формула записывается в виде
Кроме этого необходимо знать таблицу производных и таблицу интегралов.
Таблица производных
Таблица основных интегралов
- Вопросы для подготовки к экзамену по дисциплине «Высшая математика» (II семестр) тема 1. Дифференциальное исчисление функции одной переменной.
- Непрерывность функции одной переменной, имеющей конечную производную.
- Уравнение касательной и нормали к графику.
- Теоремы о производной суммы, разности, произведения и частного двух функций одной переменной.
- Производная сложной функции.
- Производная обратной функции.
- Производные функций, заданных неявно и параметрически.
- Дифференцируемость и дифференциал функции. Геометрический смысл дифференциала.
- Основные теоремы дифференциального исчисления: теоремы Ролля, Лагранжа, Коши.
- Правило Лопиталя.
- Теоремы о необходимом и достаточном условии существования точек перегиба.
- Асимптоты кривой.
- Тема 3. Дифференцирование функций нескольких переменных.
- Частные производные и полный дифференциал функции двух переменных.
- Частные производные и дифференциалы высших порядков функции двух переменных.
- Дифференцирование сложной функции.
- Понятие экстремума функции двух переменных.
- Необходимое условие экстремума функции двух переменных.
- Наибольшее и наименьшее значения функции в замкнутой области.
- Тема 4. Неопределённый интеграл.
- Интегрирование иррациональных функций.
- Дифференциальный бином.
- Интегрирование тригонометрических функций.
- Тема 5. Определённый интеграл.
- Задачи, приводящие к понятию определённого интеграла. Определённый интеграл как предел интегральных сумм.
- Основные свойства определённого интеграла.
- Вычисление длин дуг плоских кривых.
- Тема 6. Несобственные интегралы.
- Несобственные интегралы с бесконечными пределами. Признаки сходимости.
- Несобственные интегралы от неограниченных функций. Признаки сходимости.
- Тема 7. Двойные и тройные интегралы.
- Двойные интегралы. Изменение порядка интегрирования.
- Вычисление двойных интегралов.
- Тройные интегралы и их вычисление.
- Замена переменных в двойных и тройных интегралах.
- Криволинейные интегралы.