Дифференциал и его геометрический смысл.
Рассмотрим функцию y = f(x), дифференцируемую в данной точке x. Приращение D y ее представимо в виде
D y = f'(x)D x +a (D x) D x,
где первое слагаемое линейно относительно D x, а второе является в точке D x = 0 бесконечно малой функцией более высокого порядка, чем D x. Если f'(x)№ 0, то первое слагаемое представляет собой главную часть приращения D y. Эта главная часть приращения является линейной функцией аргумента D x и называется дифференциалом функции y = f(x). Если f'(x) = 0, то дифференциал функции по определению считается равным нулю.
Определение 5 (дифференциал). Дифференциалом функции y = f(x) называется главная линейная относительно D x часть приращения D y, равная произведению производной на приращение независимой переменной
dy = f'(x)D x.
Заметим, что дифференциал независимой переменной равен приращению этой переменной dx = D x. Поэтому формулу для дифференциала принято записывать в следующем виде: dy = f'(x)dx.
Выясним каков геометрический смысл дифференциала. Возьмем на графике функции y = f(x) произвольную точку M(x,y) (рис21.). Проведем касательную к кривой y = f(x) в точке M, которая образует угол f с положительным направлением оси OX, то есть f'(x) = tg f. Из прямоугольного треугольника MKN
KN = MNtgf = D xtg f = f'(x)D x,
то есть dy = KN.
Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда x получает приращение D x.
Отметим основные свойства дифференциала, которые аналогичны свойствам производной.
d c = 0;
d(c u(x)) = c d u(x);
d(u(x) ± v(x)) = d u(x) ± d v(x);
d(u(x) v(x)) = v(x) d u(x) + u(x)d v(x);
d(u(x) / v(x)) = (v(x) d u(x) - u(x) d v(x)) / v2(x).
Укажем еще на одно свойство, которым обладает дифференциал, но не обладает производная. Рассмотрим функцию y = f(u), где u = f (x), то есть рассмотрим сложную функцию y = f(f(x)). Если каждая из функций f и f являются дифференцируемыми, то производная сложной функции согласно теореме (3) равна y' = f'(u)· u'. Тогда дифференциал функции
dy = f'(x)dx = f'(u)u'dx = f'(u)du,
так как u'dx = du. То есть dy = f'(u)du.
Последнее равенство означает, что формула дифференциала не изменяется, если вместо функции от x рассматривать функцию от переменной u. Это свойство дифференциала получило название инвариантности формы первого дифференциала.
Замечание. Отметим, что в формуле (4) dx = D x, а в формуле (5) du яляется лишь линейной частью приращения функции u.
Производные и дифференциалы высших порядков
Предположим, что функция f'(x) является дифференцируемой в некоторой точке x интервала (a,b), то есть имеет в этой точке производную. Тогда данную производную называют второй произвоьдной и обозначают f(2)(x), f''(x) или y(2), y''(x). Аналогично можно ввести понятие второй , третьей и т. д. производных. По индукции можно ввести понятие n- ой производной: y(n) = (y(n-1))'
Функцию, имеющую на некотором множестве конечную производную порядка n, называют n раз дифференцируемой на этом множестве. Методика нахождения производных высших порядков предполагает умение находить производные первого порядка, о чем говорит формула (6).
Если u(x), v(x) две дифференцируемые функции, то для нахождения производной их произведения справедлива формула Лейбница
(u(x)v(x))(n) = u(n)v+nu(n-1)v'+(n(n-1)/2)u(n-2)v''+...+ uv(n) =
= Sk = 0nCnku(n-k)v(k),
где
Cnk = (n(n-1)(n-2)...(n-k+1))/k!, u(0) = u, v(0) = v.
Данная формула Лейбница особенно эффективна в случае, когда одна из перемножаемых функций имеет конечное число отличных от нуля производных и легко вычислить производные другой функции.
Пример 9. Пусть y = ex(x2-1). Найти y(10). Положим u(x) = ex,
v(x) = (x2-1). Согласно формуле Лейбница
y(10) = (ex)(25)(x2-1)+10(ex)(9)(x2-1)'+(10· 9/2) (ex)(8)(x2-1)'',
так как следующие слагаемые равны нулю. Поэтому
y(10) = ex(x2-1)+10ex2x+(10· 9/2)ex (2) = ex(x2+20x+89)
Рассмотрим выражение для первого дифференциала
dy = f'(x)dx.
Пусть функция, стоящая в правой части, является дифференцируемой функцией в данной точке x. Для этого достаточно, чтобы y = f(x), была дифференцируема два раза в данной точке x, а аргумент либо является независимой переменной, либо представляет собой дважды дифференцируемую функцию.
- Основные определения, связанные с матрицами.
- Операции над матрицами: умножение на число, сложение и умножение матриц. Транспонирование матриц.
- 3. Определители квадратных матриц. Миноры и алгебраические дополнения элементов квадратных матриц. Вычисление определителей. Свойства определителей.
- Обратная матрица.
- Системы линейных уравнений. Основные понятия.
- Решение системы из п уравнений с п неизвестными по формуле Крамера и методом обратной матрицы.
- Метод Гаусса.
- Системы линейных однородных уравнений, свойства решений. Фундаментальная система решений. Общее решение.
- Скалярные и векторные величины. Трехмерные векторы. Действия над векторами.
- Свойства линейных операций над векторами.
- Скалярное произведение векторов. Условия параллельности и перпендикулярности векторов.
- Системы координат. Декартова прямоугольная и полярная система координат. Расстояние между двумя точками.
- Уравнение линии на плоскости. Линии первого порядка. Разные формы уравнения прямой. Расстояние от точки до прямой.
- Общее уравнение плоскости в пространстве. Уравнение прямой в пространстве. Расстояние от точки до плоскости.
- Переменные и их пределы. Величины бесконечно малые и бесконечно большие.
- 2. Переменные величины и фу нкции.
- Теоремы о пределах. Раскрытие некоторых типов неопределенностей.
- Замечательные пределы.
- Асимптоты графика функции.
- Производная функции в точке. Геометрический и физический смысл производной. Непрерывность функций, имеющих производную.
- Дифференциал и его геометрический смысл.
- Монотонная функция. Условие монотонности функций.
- Экстремум функции. Необходимое условие экстремума (теорема Ферма). Достаточное условие экстремума.
- Направление вогнутости графика функции. Точки перегиба.
- 1. Нахождение области определения функции.
- Общая схема исследования графика функции.
- Правило Лопиталя.