Экстремум функции. Необходимое условие экстремума (теорема Ферма). Достаточное условие экстремума.
Достаточное условие возрастания (убывания) функции на промежутке. Понятие экстремума функции. Необходимое условие экстремума функции (теорема Ферма).
Если производная некоторой непрерывной функции f(x) на некотором промежутке положительна (f'(x)>0), то на этом промежутке функция возрастает.
Если производная некоторой непрерывной функции f(x) на некотором промежутке отрицательна (f'(x)<0), то на этом промежутке функция убывает.
Эти условия являются достаточными условиями возрастания (убывания функции).
Постараемся понять, почему так происходит (строгое доказательство рассматривается в программе высших учебных заведений). Известно, что геометрический смысл производной - тангенс угла наклона касательной. Значит, если производная положительна, то угол будет острым.
И получается, что график идет «в гору». Если производная отрицательна, то угол наклона будет тупым и получается, что график идет «под гору».
Промежутки возрастания и убывания называют промежутками монотонности функции.
Точка x0 называется точкой максимума функции f(x), если существует положительное число E, такое, что для любой точки x из промежутка
, выполняется неравенство
Иными словами, значение функции f(x0) самое большое в некоторой окрестности точки x0.
Точка x0 называется точкой минимума функции f(x), если существует положительное число E, такое, что для любой точки x из промежутка
выполняется неравенство
Иными словами значение функции f(x0) самое маленькое в некоторой окрестности точки x0.
На следующем графике точки -9 и 3 являются точками максимума, а точка -2 является точкой минимума.
Точки максимума или минимума называются точками экстремума.
Теорема Ферма: Если x0 - точка экстремума непрерывной функции f(x), то f'(x0)=0.
Геометрически это выглядит так: в точке экстремума касательная параллельна оси ОХ и, поэтому угол наклона равен 0.
Это условие является необходимым, но не достаточным условием экстремума.
- Основные определения, связанные с матрицами.
- Операции над матрицами: умножение на число, сложение и умножение матриц. Транспонирование матриц.
- 3. Определители квадратных матриц. Миноры и алгебраические дополнения элементов квадратных матриц. Вычисление определителей. Свойства определителей.
- Обратная матрица.
- Системы линейных уравнений. Основные понятия.
- Решение системы из п уравнений с п неизвестными по формуле Крамера и методом обратной матрицы.
- Метод Гаусса.
- Системы линейных однородных уравнений, свойства решений. Фундаментальная система решений. Общее решение.
- Скалярные и векторные величины. Трехмерные векторы. Действия над векторами.
- Свойства линейных операций над векторами.
- Скалярное произведение векторов. Условия параллельности и перпендикулярности векторов.
- Системы координат. Декартова прямоугольная и полярная система координат. Расстояние между двумя точками.
- Уравнение линии на плоскости. Линии первого порядка. Разные формы уравнения прямой. Расстояние от точки до прямой.
- Общее уравнение плоскости в пространстве. Уравнение прямой в пространстве. Расстояние от точки до плоскости.
- Переменные и их пределы. Величины бесконечно малые и бесконечно большие.
- 2. Переменные величины и фу нкции.
- Теоремы о пределах. Раскрытие некоторых типов неопределенностей.
- Замечательные пределы.
- Асимптоты графика функции.
- Производная функции в точке. Геометрический и физический смысл производной. Непрерывность функций, имеющих производную.
- Дифференциал и его геометрический смысл.
- Монотонная функция. Условие монотонности функций.
- Экстремум функции. Необходимое условие экстремума (теорема Ферма). Достаточное условие экстремума.
- Направление вогнутости графика функции. Точки перегиба.
- 1. Нахождение области определения функции.
- Общая схема исследования графика функции.
- Правило Лопиталя.