logo search
Lektsii_po_GA_1_semestr_PI

Формальная производная, ее свойства

Многочлен f(x+y)-f(x) делится на y без остатка (проверить по теореме Безу). Положим . Многочлен F(x,0) называют производной многочлена f(x) и обозначают .

Теорема 2.19 (Свойства производной)

Доказательство следует из определения производной.

Говорят, что кратность корня a многочлена f(x) равна k, если f(x) делится на и не делится (без остатка) на .

Теорема 2.20 (Кратность корня)

Если a корень многочлена f(x) кратности k, то a корень его производной кратности k-1.

Доказательство. Пусть a корень кратности k многочлена f(x). Тогда f(x) представим в виде произведения , причём . Производная от f(x) равна , где . Поскольку , то теорема доказана.

Следствие 2.6 Многочлен не имеет кратных множителей.

Доказательство. Перейдём к полю разложения f(x). Многочлен над этим полем имеет те же самые корни, что и f(x), только кратности 1. Вернёмся в исходное поле P. Многочлен разлагается на те же неприводимые множители что и f(x), только кратности 1.