Основные свойства определённого интеграла.
Ниже предполагается, что f (x) и g (x) - непрерывные функции на замкнутом интервале [a, b].
где k - константа;
Если для всех, то.
Если в интервале [a, b], то
Формула Ньютона-Лейбница.
Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Если F (x) - первообразная функции f (x) на [a,b], то
Вычисление определённого интеграла методом замены переменной.
Определенный интеграл по переменной x можно преобразовать в определенный интеграл относительно переменной t с помощью подстановки x = g (t):
Новые пределы интегрирования по переменной t определяются выражениями
где g -1- обратная функция к g, т.е. t =g -1(x).
Вычисление определённого интеграла интегрированием по частям.
В этом случае формула интегрирования по частям имеет вид:
где означает разность значений произведения функций uv при x = b и x = a.
Вычисление площадей плоских фигур .
Площадь фигуры, ограниченной осью 0x, двумя вертикальными прямыми x = a, x = b и графиком функцииf (x) (рисунок 1), определяется по формуле
| ||
Рис.1 |
| Рис.2 |
Пусть F (x) и G (x) - первообразные функций f (x) и g (x), соответственно. Если f (x) ≥ g (x) на замкнутом интервале [a, b], то площадь области, ограниченной двумя кривыми y = f (x), y = g (x) и вертикальными линиями x = a, x = b (рисунок 2), определяется формулой
Вычисление объёмов тел вращения.
Пусть криволинейная трапеция, то есть фигура, ограниченная осью Ox, прямыми x = a, x = b и графиком непрерывной возрастающей неотрицательной функции y = f (x), вращается вокруг оси Ox, вследствие чего образуется тело вращения. Сечение этого тела плоскостью, перпендикулярной оси Ox, есть круг или точка. На промежутке(a; b) выберем точку x. Сечение, проведенное через эту точку перпендикулярно оси Ox, есть круг площадью S (x) = πf 2 (x). Объем части тела вращения, ограниченной сечениями, проведенными через точки a и x, обозначим через V (x), а объем данного тела вращения – через V.
Объем тела вращения равен
- Вопросы для подготовки к экзамену по дисциплине «Высшая математика» (II семестр) тема 1. Дифференциальное исчисление функции одной переменной.
- Непрерывность функции одной переменной, имеющей конечную производную.
- Уравнение касательной и нормали к графику.
- Теоремы о производной суммы, разности, произведения и частного двух функций одной переменной.
- Производная сложной функции.
- Производная обратной функции.
- Производные функций, заданных неявно и параметрически.
- Дифференцируемость и дифференциал функции. Геометрический смысл дифференциала.
- Основные теоремы дифференциального исчисления: теоремы Ролля, Лагранжа, Коши.
- Правило Лопиталя.
- Теоремы о необходимом и достаточном условии существования точек перегиба.
- Асимптоты кривой.
- Тема 3. Дифференцирование функций нескольких переменных.
- Частные производные и полный дифференциал функции двух переменных.
- Частные производные и дифференциалы высших порядков функции двух переменных.
- Дифференцирование сложной функции.
- Понятие экстремума функции двух переменных.
- Необходимое условие экстремума функции двух переменных.
- Наибольшее и наименьшее значения функции в замкнутой области.
- Тема 4. Неопределённый интеграл.
- Интегрирование иррациональных функций.
- Дифференциальный бином.
- Интегрирование тригонометрических функций.
- Тема 5. Определённый интеграл.
- Задачи, приводящие к понятию определённого интеграла. Определённый интеграл как предел интегральных сумм.
- Основные свойства определённого интеграла.
- Вычисление длин дуг плоских кривых.
- Тема 6. Несобственные интегралы.
- Несобственные интегралы с бесконечными пределами. Признаки сходимости.
- Несобственные интегралы от неограниченных функций. Признаки сходимости.
- Тема 7. Двойные и тройные интегралы.
- Двойные интегралы. Изменение порядка интегрирования.
- Вычисление двойных интегралов.
- Тройные интегралы и их вычисление.
- Замена переменных в двойных и тройных интегралах.
- Криволинейные интегралы.