Тема 4. Неопределённый интеграл.
Первообразная и неопределённый интеграл.
Функция F(x) называется первообразной функции f(x), если
Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как
Таким образом, если F - некоторая частная первообразная, то справедливо выражение
где С - произвольная постоянная.
Основные свойства интеграла.
В приведенных ниже формулах f и g - функции переменной x, F - первообразная функции f, а, k, C - постоянные величины.
Интегрирование по частям
Пусть u(x) и v(x) являются дифференцируемыми функциями. Дифференциал произведения функций u и v определяется формулой
Проинтегрировав обе части этого выражения, получим
или, переставляя члены,
Это и есть формула интегрирования по частям.
Интегрирование методом подстановки.
Рассмотрим неопределенный интеграл F(x) некоторой функции f(x). Для упрощения вычисления интеграла часто удобно выполнить замену переменной. Переход от x к новой переменной u описывается выражением
где x = g (u) - подстановка. Соответственно, обратная функция u = g −1(x)описывает зависимость новой переменной от старой. Важно иметь ввиду, что дифференциал dx должен быть заменен на дифференциал новой переменной du.
Интегрирование рациональных дробей.
Для интегрирования рациональной функции , где P(x) и Q(x) - полиномы, используется следующая последовательность шагов:
Если дробь неправильная (т.е. степень P(x) больше степени Q(x)), преобразовать ее в правильную, выделив целое выражение;
Разложить знаменатель Q(x) на произведение одночленов и/или несократимых квадратичных выражений;
Разложить рациональную дробь на простейшие дроби, используя метод неопределенных коэффициентов;
Вычислить интегралы от простейших дробей.
Рассмотрим подробно шаг 3. Разложение рациональной дроби на сумму простейших дробей.
Запишем рациональную функцию в следующем виде:
Общее число неопределенных коэффициентов Ai , Bi , Ki , Li , Mi , Ni , ... должно быть равно степени знаменателя Q(x). Затем умножим обе части полученного уравнения на знаменатель Q(x) и приравняем коэффициенты при слагаемых с одинаковыми степенями x. В результате мы получим систему линейных уравнений относительно неизвестных коэффициентов Ai , Bi , Ki , Li , Mi , Ni , .... Данная система всегда имеет единственное решение. Описанный алгоритм представляет собой метод неопределенных коэффициентов.
- Вопросы для подготовки к экзамену по дисциплине «Высшая математика» (II семестр) тема 1. Дифференциальное исчисление функции одной переменной.
- Непрерывность функции одной переменной, имеющей конечную производную.
- Уравнение касательной и нормали к графику.
- Теоремы о производной суммы, разности, произведения и частного двух функций одной переменной.
- Производная сложной функции.
- Производная обратной функции.
- Производные функций, заданных неявно и параметрически.
- Дифференцируемость и дифференциал функции. Геометрический смысл дифференциала.
- Основные теоремы дифференциального исчисления: теоремы Ролля, Лагранжа, Коши.
- Правило Лопиталя.
- Теоремы о необходимом и достаточном условии существования точек перегиба.
- Асимптоты кривой.
- Тема 3. Дифференцирование функций нескольких переменных.
- Частные производные и полный дифференциал функции двух переменных.
- Частные производные и дифференциалы высших порядков функции двух переменных.
- Дифференцирование сложной функции.
- Понятие экстремума функции двух переменных.
- Необходимое условие экстремума функции двух переменных.
- Наибольшее и наименьшее значения функции в замкнутой области.
- Тема 4. Неопределённый интеграл.
- Интегрирование иррациональных функций.
- Дифференциальный бином.
- Интегрирование тригонометрических функций.
- Тема 5. Определённый интеграл.
- Задачи, приводящие к понятию определённого интеграла. Определённый интеграл как предел интегральных сумм.
- Основные свойства определённого интеграла.
- Вычисление длин дуг плоских кривых.
- Тема 6. Несобственные интегралы.
- Несобственные интегралы с бесконечными пределами. Признаки сходимости.
- Несобственные интегралы от неограниченных функций. Признаки сходимости.
- Тема 7. Двойные и тройные интегралы.
- Двойные интегралы. Изменение порядка интегрирования.
- Вычисление двойных интегралов.
- Тройные интегралы и их вычисление.
- Замена переменных в двойных и тройных интегралах.
- Криволинейные интегралы.