10) Однородные системы линейных уравнений
СЛАУ называется однородной, если все её свободные члены равны 0.
Теорема 1 (о нетривиальных решениях однородной системы)
Однородная линейная система с квадратной матрицей имеет нетривиальное решение тогда и только тогда, когда определитель системы равен нулю.
Доказательство По теореме Крамера тогда и только тогда, когда система с квадратной матрицей имеет единственное решение (т.е. векторы – столбцы системы – линейно зависимы). В случае если задана система линейных однородных уравнений, это решение – тривиальное (0,0,…0). Значит, нетривиальные решения имеются тогда и только тогда, когда(т.е. решений системы бесконечное множество).
Любое решение СЛОУ выражается в виде линейной комбинации
векторов (если):
, …,.
Покажем, что вектора – линейно независимы. Для этого составим матрицуиз их координат:
.
Ниже черты расположен минор порядка , отличный от нулястолбцов матрицылинейно независимы.
Следовательно, вектора – линейно независимы, т.е. эти вектора образуют базис подпространства.
Условие нетривиальной совместности:
Для того, чтобы однородная система имела нетривиальное решение, необходимо и достаточно, чтобы ранг ее основной матрицы был меньше числа неизвестных
Теоре́ма Кро́некера — Капе́лли— критерий совместности системы линейных алгебраических уравнений:
Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.
- Экзамен по матану
- 1) Частные виды матриц.
- 2) Определители. Правила вычисления
- 3) Свойства определителей
- 4) Обратная матрица, вычисление, приложение.
- 5)Теорема о существовании и единственности обратной матрицы.
- 6) Теорема Кронекера – Капели
- 7) Метод крамера (вывод) решения систем линейных уравнений.
- 8)Метод Гаусса решения систем линейных уравнений
- 9) Решение неопределённых систем линейных уравнений.
- 10) Однородные системы линейных уравнений
- 11. Векторы. Линейные операции над векторами
- 12. Скалярное произведение векторов, свойства, приложения.
- 13. Векторное произведение векторов
- 14.Смешанное произведение векторов
- 15.Прямая линия на плоскости, её общее уравнение и его исследование.
- 16.Вывести параметрическое и каноническое уравнение прямой на плоскости.
- 17.Общее уравнение плоскости вывод исследование
- 18.Эллипс, гипербола парабола. Каноническое уравнение.
- 19.Каноническое и общее уравнение прямой в пространстве
- 20.Цилиндрические и канонические поверхности
- 21. Теорема о разности между переменной и её пределом ( Основная т. О пределах)
- 22.Теорема о связи бесконечно больших и бесконечно малых величин
- 23.Первый замечательный предел
- 24.Сравнение бесконечно малых функция и свойства эквивалентных
- 25.Точки разрыва и их классификации
- 26.Теоремы о производных суммы, произведения и частного двух функций.
- 27.Вывод производных тригонометрических функций sincostgctg
- 28 Производная обратной функции
- 29.Вывод производной и логарифмический показатель функции (axиlogax)
- 31. Производная неявной функции. Производная функции заданной параметрически.
- 32.Теорема ферма
- 33.Теорема Роля
- 34.Теорема Коши
- 35. Теорема Лопиталя
- 36. Раскрытие неопределённости вида 0*∞, ∞-∞, 1∞
- 37. Условие монотонности. Необходимое условие экстремума.