25.Точки разрыва и их классификации
Если функция f (x) не является непрерывной в точке x = a, то говорят, что f (x) имеет разрыв в этой точке. На рисунке 1 схематически изображены графики четырех функций, две из которых непрерывны при x = a, а две имеют разрыв.
| ||
Непрерывна при x = a. |
| Имеет разрыв при x = a. |
| ||
Непрерывна при x = a. |
| Имеет разрыв при x = a. |
Рисунок 1. |
Классификация точек разрыва функции
Все точки разрыва функции разделяются на точки разрыва первого и второго рода. Говорят, что функция f (x) имеет точку разрыва первого рода при x = a, если в это точке
Существуют левосторонний предел и правосторонний предел;
Эти односторонние пределы конечны.
При этом возможно следующие два случая:
Левосторонний предел и правосторонний предел равны друг другу:
Такая точка называется точкой устранимого разрыва.
Левосторонний предел и правосторонний предел не равны друг другу:
Такая точка называется точкой конечного разрыва. Модуль разности значений односторонних пределов называется скачком функции.
Функция f (x) имеет точку разрыва второго рода при x = a , если, по крайней мере, один из односторонних пределов не существует или равен бесконечности.
- Экзамен по матану
- 1) Частные виды матриц.
- 2) Определители. Правила вычисления
- 3) Свойства определителей
- 4) Обратная матрица, вычисление, приложение.
- 5)Теорема о существовании и единственности обратной матрицы.
- 6) Теорема Кронекера – Капели
- 7) Метод крамера (вывод) решения систем линейных уравнений.
- 8)Метод Гаусса решения систем линейных уравнений
- 9) Решение неопределённых систем линейных уравнений.
- 10) Однородные системы линейных уравнений
- 11. Векторы. Линейные операции над векторами
- 12. Скалярное произведение векторов, свойства, приложения.
- 13. Векторное произведение векторов
- 14.Смешанное произведение векторов
- 15.Прямая линия на плоскости, её общее уравнение и его исследование.
- 16.Вывести параметрическое и каноническое уравнение прямой на плоскости.
- 17.Общее уравнение плоскости вывод исследование
- 18.Эллипс, гипербола парабола. Каноническое уравнение.
- 19.Каноническое и общее уравнение прямой в пространстве
- 20.Цилиндрические и канонические поверхности
- 21. Теорема о разности между переменной и её пределом ( Основная т. О пределах)
- 22.Теорема о связи бесконечно больших и бесконечно малых величин
- 23.Первый замечательный предел
- 24.Сравнение бесконечно малых функция и свойства эквивалентных
- 25.Точки разрыва и их классификации
- 26.Теоремы о производных суммы, произведения и частного двух функций.
- 27.Вывод производных тригонометрических функций sincostgctg
- 28 Производная обратной функции
- 29.Вывод производной и логарифмический показатель функции (axиlogax)
- 31. Производная неявной функции. Производная функции заданной параметрически.
- 32.Теорема ферма
- 33.Теорема Роля
- 34.Теорема Коши
- 35. Теорема Лопиталя
- 36. Раскрытие неопределённости вида 0*∞, ∞-∞, 1∞
- 37. Условие монотонности. Необходимое условие экстремума.