17.Общее уравнение плоскости вывод исследование
Всякое уравнение вида , где A, B, C и D – некоторые действительные числа, причем А, В и C одновременно не равны нулю, определяет плоскость в заданной прямоугольной системе координат Oxyz в трехмерном пространстве, и всякая плоскость в прямоугольной системе координат Oxyz в трехмерном пространстве определяется уравнением видапри некотором наборе чисел A, B, C и D.
Теорема состоит из двух частей. В первой части нам дано уравнениеи нужно доказать, что оно определяет плоскость. Во второй части, нам дана некоторая плоскость и требуется доказать, что ее можно определить уравнениемпри некотором выборе чисел А, В, С и D.
Начнем с доказательства первой части теоремы.
Так как числа А, В и С одновременно не равны нулю, то существует точка , координаты которой удовлетворяют уравнению, то есть, справедливо равенство. Отнимем левую и правую части полученного равенства соответственно от левой и правой частей уравнения, при этом получим уравнение видаэквивалентное исходному уравнению. Теперь, если мы докажем, что уравнениеопределяет плоскость, то этим будет доказано, что эквивалентное ему уравнениетакже определяет плоскость в заданной прямоугольной системе координат в трехмерном пространстве.
Равенство представляет собой необходимое и достаточное условие перпендикулярности векторови. Иными словами, координаты плавающей точкиудовлетворяют уравнениютогда и только тогда, когда перпендикулярны векторыи. Тогда, учитывая факт, приведенный перед теоремой, мы можем утверждать, что если справедливо равенство, то множество точекопределяет плоскость, нормальным вектором которой является, причем эта плоскость проходит через точку. Другими словами, уравнениеопределяет в прямоугольной системе координат Oxyz в трехмерном пространстве указанную выше плоскость. Следовательно, эквивалентное уравнениеопределяет эту же плоскость. Первая часть теоремы доказана.
Приступим к доказательству второй части.
Пусть нам дана плоскость, проходящая через точку , нормальным вектором которой является. Докажем, что в прямоугольной системе координат Oxyz ее задает уравнение вида.
Для этого, возьмем произвольную точку этой плоскости. Пусть этой точкой будет . Тогда векторыибудут перпендикулярны, следовательно, их скалярное произведение будет равно нулю:. Приняв, уравнение примет вид. Это уравнение и задает нашу плоскость. Итак, теорема полностью доказана.
- Экзамен по матану
- 1) Частные виды матриц.
- 2) Определители. Правила вычисления
- 3) Свойства определителей
- 4) Обратная матрица, вычисление, приложение.
- 5)Теорема о существовании и единственности обратной матрицы.
- 6) Теорема Кронекера – Капели
- 7) Метод крамера (вывод) решения систем линейных уравнений.
- 8)Метод Гаусса решения систем линейных уравнений
- 9) Решение неопределённых систем линейных уравнений.
- 10) Однородные системы линейных уравнений
- 11. Векторы. Линейные операции над векторами
- 12. Скалярное произведение векторов, свойства, приложения.
- 13. Векторное произведение векторов
- 14.Смешанное произведение векторов
- 15.Прямая линия на плоскости, её общее уравнение и его исследование.
- 16.Вывести параметрическое и каноническое уравнение прямой на плоскости.
- 17.Общее уравнение плоскости вывод исследование
- 18.Эллипс, гипербола парабола. Каноническое уравнение.
- 19.Каноническое и общее уравнение прямой в пространстве
- 20.Цилиндрические и канонические поверхности
- 21. Теорема о разности между переменной и её пределом ( Основная т. О пределах)
- 22.Теорема о связи бесконечно больших и бесконечно малых величин
- 23.Первый замечательный предел
- 24.Сравнение бесконечно малых функция и свойства эквивалентных
- 25.Точки разрыва и их классификации
- 26.Теоремы о производных суммы, произведения и частного двух функций.
- 27.Вывод производных тригонометрических функций sincostgctg
- 28 Производная обратной функции
- 29.Вывод производной и логарифмический показатель функции (axиlogax)
- 31. Производная неявной функции. Производная функции заданной параметрически.
- 32.Теорема ферма
- 33.Теорема Роля
- 34.Теорема Коши
- 35. Теорема Лопиталя
- 36. Раскрытие неопределённости вида 0*∞, ∞-∞, 1∞
- 37. Условие монотонности. Необходимое условие экстремума.