logo
Немного по МАТАНУ

26.Теоремы о производных суммы, произведения и частного двух функций.

Пусть функции u = u(x), v= v(x) дифференцируемы. Тогда

Доказательство

Если аргумент x получит приращение Δx, то функции u, v получат приращения

Пусть y = u + v, тогда

Воспользовавшись свойством предела суммы функции, получаем

Утверждение 1) теоремы доказано.

Если y = u v, то Прибавив и отняв в правой части этого равенства произведение, после перегруппировки слагаемых получим. Воспользовавшись свойствами предела функции, получаем

Утверждение 2) теоремы доказано.

Теперь, если

Прибавив и отняв в правой части этого равенства частное , после перегруппировки слагаемых получим

Далее аналогично доказываем утверждение 3). Теорема доказана.

Из теорем 2,3 следует, что постоянную можно выносить за знак производной, т.е. (cy)' = cy'