15.Прямая линия на плоскости, её общее уравнение и его исследование.
Пусть на плоскости введена прямоугольная декартова система координат Оxy.
Теорема.
Всякое уравнение первой степени вида , где А, В и С – некоторые действительные числа, причем А и В одновременно не равны нулю, задает прямую линию в прямоугольной системе координат Oxy на плоскости, и любая прямая в прямоугольной системе координат Oxy на плоскости задается уравнением видапри некотором наборе значений A, B и C.
Докажемсначала, что уравнение видазадает прямую на плоскости.
Пусть координаты точки удовлетворяют уравнению, то есть,. Вычтем из левой и правой частей уравнениясоответственно левую и правую части равенства, при этом получаем уравнение вида, которое эквивалентно.
Уравнение представляет собой необходимое и достаточное условие перпендикулярности двух векторови. То есть, множество всех точекопределяет в прямоугольной системе координат Oxy прямую линию, перпендикулярную направлению вектора. Если бы это было не так, то векторыине были бы перпендикулярными и равенствоне выполнялось бы.
Таким образом, уравнение задает прямую линию в прямоугольной декартовой системе координат Oxy на плоскости, следовательно, эквивалентное ему уравнение видазадает эту же прямую. На этом первая часть теоремы доказана.
Теперь докажем, что всякая прямая в прямоугольной системе координат Oxy на плоскости определяется уравнением первой степени вида .
Пусть в прямоугольной системе координат Oxy на плоскости задана прямая a, проходящая через точку,- нормальный вектор прямойa, и пусть- плавающая точка этой прямой. Тогда векторыиперпендикулярны, следовательно, их скалярное произведение равно нулю, то есть,. Полученное равенство можно переписать в виде. Если принять, то получим уравнение, которое соответствует прямойa.
На этом доказательство теоремы завершено.
- Экзамен по матану
- 1) Частные виды матриц.
- 2) Определители. Правила вычисления
- 3) Свойства определителей
- 4) Обратная матрица, вычисление, приложение.
- 5)Теорема о существовании и единственности обратной матрицы.
- 6) Теорема Кронекера – Капели
- 7) Метод крамера (вывод) решения систем линейных уравнений.
- 8)Метод Гаусса решения систем линейных уравнений
- 9) Решение неопределённых систем линейных уравнений.
- 10) Однородные системы линейных уравнений
- 11. Векторы. Линейные операции над векторами
- 12. Скалярное произведение векторов, свойства, приложения.
- 13. Векторное произведение векторов
- 14.Смешанное произведение векторов
- 15.Прямая линия на плоскости, её общее уравнение и его исследование.
- 16.Вывести параметрическое и каноническое уравнение прямой на плоскости.
- 17.Общее уравнение плоскости вывод исследование
- 18.Эллипс, гипербола парабола. Каноническое уравнение.
- 19.Каноническое и общее уравнение прямой в пространстве
- 20.Цилиндрические и канонические поверхности
- 21. Теорема о разности между переменной и её пределом ( Основная т. О пределах)
- 22.Теорема о связи бесконечно больших и бесконечно малых величин
- 23.Первый замечательный предел
- 24.Сравнение бесконечно малых функция и свойства эквивалентных
- 25.Точки разрыва и их классификации
- 26.Теоремы о производных суммы, произведения и частного двух функций.
- 27.Вывод производных тригонометрических функций sincostgctg
- 28 Производная обратной функции
- 29.Вывод производной и логарифмический показатель функции (axиlogax)
- 31. Производная неявной функции. Производная функции заданной параметрически.
- 32.Теорема ферма
- 33.Теорема Роля
- 34.Теорема Коши
- 35. Теорема Лопиталя
- 36. Раскрытие неопределённости вида 0*∞, ∞-∞, 1∞
- 37. Условие монотонности. Необходимое условие экстремума.