logo
vstyp_mpdo

516. Аналіз коефіцієнтів цільової функції задач лінійного програмування.

Розглянемо задачу лінійного програмування

(1)

Допустимо, що коефіцієнт цільової функції при деякій k-ій змінній з початковим значенням змінився на величину . Отже, цільова функція (1) набуде вигляду:

,де С, Х — відповідно вектор компонент цільової функції та вектор змінних, ek — одиничний вектор-рядок, де одиниця відповідає k-ій компоненті.

Дослідимо питання визначення границь можливих змін коефіцієнтів цільової функції, в межах яких структура оптимального плану залишається постійною.

Перший випадок — коефіцієнт ck відповідає базисній змінній оптимального плану. За припущенням базисними змінними оптимального плану є перші m векторів останньої симплексної таблиці, отже, . Зміни коефіцієнтів цільової функції в процесі реалізації симплексного методу впливатимуть лише на значення оцінкового ряду.

Другий випадок — змінюється коефіцієнт цільової функції при небазисній змінній.

Зміна коефіцієнта цільової функції небазисної змінної впливає на оцінку лише цієї змінної. Для небазисної змінної діапазон стійкості оптимального плану визначається нерівністю

Якщо коефіцієнти при змінних цільової функції задачі лінійного програмування водночас змінюються для кількох чи всіх значень , то визначення границь можливих змін величин здійснюється аналогічно першого випадку.

Економічний зміст нерівностей полягає в тому, що вони визначають границі можливих змін цін (собівартос­ті, прибутку) одиниць кожного виду продукції, в межах яких визначена оптимальним планом структура виробництва продукції залишається незмінною.