logo
vstyp_mpdo

558. Визначення ланцюга Маркова. Матриця однокрокового переходу. Однорідні ланцюги Маркова та їх класифікація.

Ланцюг Маркова - це випадковий процес, що задовольняє властивість Маркова і який приймає скінченну чи зліченну кількість значень(станів). Існують ланцюги Маркова як з дискретним так і з неперервним часом.

Нехай I  -деяка скінченна чи зліченна множина елементи якої називаються станами. Нехай деякий процес в момент часу n (де n=0,1,2,3...) може перебувати в одному із цих станів, а в час n+1 перейти в деякий інший стан(чи залишитися в тому ж). Кожен такий перехід називається кроком. Кожен крок не є точно визначеним. З певними ймовірностями процес може перейти в один з кількох чи навіть усіх станів.

Послідовність дискретних випадкових величин називається ланцюгом Маркова (з дискретним часом), якщо

Тобто майбутні значення послідовності залежать лише від теперішнього стану і не залежать від минулих.

Матриця P(n), де

називається ма́трицею ймовірностей переходу на n-му кроці, а вектор , де

— початковим розподілом ланцюга Маркова.

Очевидно, матриця ймовірностей переходу є стохастичною, тобто

.

Ланцюг Маркова називається однорідним якщо:

,

або еквівалентно:

для всіх n.

Перехід системи зі стану до стану , який може відбуватися з певною ймовірністю в момент часу t, позначається як і називається умовною ймовірністю переходу.

Повна ймовірнісна картина всіх можливих переходів системи, яка має N станів, подається у вигляді квадратної матриці:

яку називають імовірнісною матрицею переходів. При цьому

,

оскільки ці випадкові події (перехід системи з фіксованого стану до будь-якого можливого стану утворюють повну групу. Враховуючи те, що моменти часу переходу системи названо кроками, умовні ймовірності переходу на k-му кроці позначають і називають перехідними ймовірностями марковського ланцюга.

Маркова називають однорідним, якщо тобто перехідні ймовірності не залежать від кроку k.

Матриця перехідних імовірностей для однорідних ланцюгів Маркова подається у вигляді

.

Матрицю називають матрицею однокрокового переходу системи.