logo
vstyp_mpdo

530. Квадратична функція та її властивості.

Квадратична функція n змінних називається квадратичною формою і може бути подана у вигляді: ,

де , , ,

причому матриця С завжди симетрична, тобто для всіх . Квадратична форма Z(X) називається від’ємно означеною, якщо для всіх Х, крім Х = 0, значення Z(X) < 0 (якщо Z(X) ≤ 0, то маємо від’ємно напівозначену квадратичну форму), у протилежному разі Z(X) є додатно означеною (якщо Z(X) ≥ 0, то маємо додатно напівозначену квадратичну форму).

Квадратична форма Z(X) називається неозначеною, якщо вона додатна для одних значень Х і від’ємна для інших.

Для того, щоб довільна квадратична форма була додатно (від’ємно) означеною, необхідно і достатньо, щоб усі компоненти вектора характеристичних коренів були додатними (від’ємними) значеннями.

Якщо хоча б один із характеристичних коренів дорівнює нулю, то квадратична форма є напівдодатною (напіввід’ємною). Якщо корені мають різні знаки, то квадратична форма є неозначеною.