508. Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.
Розглянемо задачу лінійного програмування:
(2.60)
(2.61)
(2.62)
Задача подана в канонічному вигляді і система обмежень (2.61) не містить одиничної матриці. Отримати одиничну матрицю можна, якщо до кожного рівняння в системі обмежень задачі додати одну змінну . Такі змінні називають штучними. (Не обов’язково кількість введених штучних змінних має дорівнювати m. Їх необхідно вводити лише в ті рівняння системи обмежень, які не розв’язані відносно базисних змінних.) Допустимо, що система рівнянь (2.61) не містить жодного одиничного вектора, тоді штучну змінну вводять у кожне рівняння:
(2.63)
У результаті додавання змінних у рівняння системи (2.61) область допустимих розв’язків задачі розширилась. Задачу з системою обмежень (2.63) називають розширеною, або М-задачею. Розв’язок розширеної задачі збігатиметься з розв’язком початкової лише за умови, що всі введені штучні змінні в оптимальному плані задачі будуть виведені з базису, тобто дорівнюватимуть нулеві. Тоді система обмежень (2.63) набуде вигляду (2.61) (не міститиме штучних змінних), а розв’язок розширеної задачі буде розв’язком і задачі (2.60)—(2.62).
Згідно з симплексним методом до базису вводять змінні, які покращують значення цільової функції. Для даної задачі на максимум вони мають його збільшувати. Отже, для того, щоб у результаті процедур симплексних перетворень виключалися з базису штучні змінні, потрібно ввести їх у цільову функцію з від’ємними коефіцієнтами. Тобто цільова функція набуде вигляду:
(У разі розв’язання задачі на відшукання мінімального значення цільової функції вводять коефіцієнти, які є досить великими числами. Цільова функція тоді має вигляд: ).
Припускається, що величина М є досить великим числом. Тоді якого б малого значення не набувала відповідна коефіцієнту штучна змінна , значення цільової функції буде від’ємним для задачі на максимум та додатним для задачі на мінімум і водночас значним за модулем. Тому процедура симплексного методу одразу вилучає відповідні змінні з базису і забезпечує знаходження плану, в якому всі штучні змінні .
Якщо в оптимальному плані розширеної задачі існує хоча б одне значення , то це означає, що початкова задача не має розв’язку, тобто система обмежень несумісна.
Для розв’язання розширеної задачі за допомогою симплексних таблиць зручно використовувати таблиці, оцінкові рядки яких поділені на дві частини-рядки. Тоді в (m+2)-му рядку записують коефіцієнти з М, а в (m+1)-му — ті, які не містять М. Вектор, який підлягає включенню до базису, визначають за (m+2)-м рядком. Ітераційний процес по (m+2)-му рядку проводять до повного виключення всіх штучних змінних з базису, потім процес визначення оптимального плану продовжують за (m+1)-им рядком.
- 501. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- 502. Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- 503. Властивості розв'язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- 504. Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- 505. Побудова опорного плану задачі лінійного програмування, перехід до іншого опорного плану.
- Такому плану відповідає розклад
- 506. Теорема про оптимальність розв'язку задачі лінійного програмування симплекс-методом.
- Якщо розглядається задача на відшукання мінімального значення цільової функції, то формулюється така теорема.
- 507. Знаходження оптимального розв'язку задачі лінійного програмування. Алгоритм симплексного методу.
- 508. Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.
- Взаємозв’язок між розв’язками початкової та розширеної задач лінійного програмування не є очевидним і визначається такою теоремою.
- 509. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- 510. Економічний зміст двоїстої задачі й двоїстих оцінок.
- 511. Теореми двоїстості, їх економічна інтерпретація.
- 512. Застосування теорем двоїстості в розв’язуванні задач лінійного програмування.
- 513. Методи розв'язування двоїстої задачі лінійного програмування.
- 514. Аналіз розв'язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- 515. Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- 516. Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- 517. Транспортна задача лінійного програмування. Економічна і математична постановка транспортної задачі.
- 518. Методи побудови опорних планів транспортної задачі. Випадок виродженості. Теорема про розв'язування транспортної задачі.
- 519. Двоїста задача до транспортної задачі. Метод потенціалів.
- 520. Розв'язування транспортної задачі методом потенціалів.
- 521. Відкриті транспортні задачі. Метод розв'язування.
- 522. Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- 523. Геометрична інтерпретація задачі цілочислового програмування.
- 524. Метод Гоморі повністю цілочислових задач. Знаходження цілої й дробової частини числа. Алгоритм розв'язування задачі.
- 525. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- 526. Графічний метод розв'язування задач нелінійного програмування.
- 527. Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв'язування задачі на безумовний екстремум.
- 528. Поняття про опуклі функції. Геометрична інтерпретація задачі опуклого програмування на площині.
- 529. Сідлова точка та необхідні і достатні умови її існування. Теорема Куна-Таккера.
- 530. Квадратична функція та її властивості.
- 531. Математична модель задачі опуклого програмування з сепарабельною цільовою функцією.
- 532. Постановка задачі квадратичного програмування та її математична модель.
- 533. Градієнтні методи розв'язання задач нелінійного програмування та їх класифікація.
- 534. Метод Франка-Вульфа. Алгоритм розв'язування задачі нелінійного програмування.
- 535. Сепарабельна функція та її властивості. Розв'язування задач нелінійного програмування методом кусково-лінійної апроксимації.
- 536. Математична постановка задачі динамічного програмування, її економічний зміст. Принцип оптимальності Беллмана.
- 537. Основні рекурентні співвідношення розв'язування задач динамічного програмування.
- 538. Методи розв'язування задач динамічного програмування. Основні кроки алгоритму розв'язування задачі динамічного програмування.
- 539. Математична постановка задачі стохастичного програмування і область їх застосування в управлінні виробничими системами.
- 540. 3Ведення розв'язання одноетапної статичної задачі стохастичного програмування до детермінованої задачі лінійного програмування.
- 541. Основні поняття теорії ігор. Гра двох гравців з нульовою сумою, правила гри, ціна гри, пара оптимальних стратегій для двох осіб.
- 542. Платіжна матриця. Основна теорема теорії ігор. Принцип мінімаксу.
- 543. Гра в чистих стратегіях. Поняття сідлової точки і її знаходження.
- 544. Гра2x2 взмішаних стратегіях. Алгоритм розв'язування задачі.
- 545. Зведення гри двох осіб до задачі лінійного програмування.
- 547. Основні числові характеристики випадкового процесу та їх властивості.
- 548. Кореляційна функція випадкового процесу та її властивості. Нормована кореляційна функція.
- 549. Поняття про оператор перетворення випадкового процесу. Лінійні однорідні перетворення. Нелінійні перетворення.
- 550. Визначення стаціонарного випадкового процесу, щільність ймовірностей для одного, k періодів.
- 551. Кореляційна функція, нормована кореляційна функція та їх властивості.
- 552. Ергодичні властивості стаціонарного випадкового процесу та його математична трактовка.
- 554. Стаціонарний випадковий процес із лінійною кореляційною функцією.
- 555. Стаціонарний випадковий процес із експоненціальною кореляційною функцією.
- 556. Пуассонівський процес та його математична модель.
- 557. Імовірні твірні функції.
- 558. Визначення ланцюга Маркова. Матриця однокрокового переходу. Однорідні ланцюги Маркова та їх класифікація.
- 559. Поглинаючі однорідні ланцюги Маркова та їх числові характеристики. Фундаментальна матриця.
- 560. Регулярні однорідні ланцюги Маркова та їх числові характеристики. Фундаментальна матриця для цих ланцюгів.