550. Визначення стаціонарного випадкового процесу, щільність ймовірностей для одного, k періодів.
Випадковий процес Х(t) називають стаціонарним у вузькому змісті, якщо
F(x1, …, xn; t1, …, tn) = F(x1, …, xn; t1+∆, …, tn+∆)
При довільних
n≥1, x1, …, xn, t1, …, tn; ∆; t1 € T, ti + ∆ € T...
Тут F(x1, …, xn; t1, …, tn) – n-мірна функція розподілу випадкового процесу Х(t).
Випадковий процес Х(t) називають стаціонарним у широкому змісті, якщо
m(t) = m(t + ?), K(t, t') = K(t + ?, t' + ?)
(t € T, t' € T, t + ?€ T), t' + ?€ T)
Очевидно, що зі стаціонарності у вузькому змісті треба стаціонарність у широкому змісті.
З формул:
m(t) = m(t + ?), K(t, t') = K(t + ?, t' + ?)
(t € T, t' € T, t + ?€ T), t' + ?€ T)
Треба, що для процесу, стаціонарного в широкому змісті, можна записати
m (t) = mx(0) = const;
D (t) = K(t, t) = K(0,0) = const;
K(t, t') = K(t - t', 0) = K (0, t' - t)
Таким чином, для процесу, стаціонарного в широкому змісті, математичне очікування й дисперсія не залежать від часу, а K(t, t') представляє собою функцію виду:
K(t, t') = k(?) = k(-?), ? = t' - t.
Видно, що k(?) - парна функція, при цьому
K(0) = В = σ2; |k(τ)| ≤ k(0); ∑ ∑ άi αj k(ti - tj) ≥ 0
Тут D - дисперсія стаціонарного процесу
Х(t), αi (I = 1, n) – довільні числа.
Для n-й похідній стаціонарного випадкового процесу формула кореляційної функції має вигляд:
Kn(τ) = (-1)n * (δ2n *k(τ) / δτ2n)
Теорема. Стаціонарний випадковий процес X(t) з кореляційною функцією k(?) безперервний у середньому квадратичному у крапці t € T тоді й тільки тоді, коли
Lim k(?) = k(0)
Теорема. Якщо кореляційна функція k(τ) стаціонарного випадкового процесу X(t) безперервна в середньому квадратичному у крапці τ=0, то вона безперервна в середньому квадратичному у будь-якій крапці τ € R1.
Теорема
Якщо кореляційна функція k(?) стаціонарного випадкового процесу X(t) задовольняє умові
Lim (1/T) ? |k(?)| dt = 0
Те X(t) є ергодичним по математичному очікуванню.
- 501. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- 502. Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- 503. Властивості розв'язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- 504. Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- 505. Побудова опорного плану задачі лінійного програмування, перехід до іншого опорного плану.
- Такому плану відповідає розклад
- 506. Теорема про оптимальність розв'язку задачі лінійного програмування симплекс-методом.
- Якщо розглядається задача на відшукання мінімального значення цільової функції, то формулюється така теорема.
- 507. Знаходження оптимального розв'язку задачі лінійного програмування. Алгоритм симплексного методу.
- 508. Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.
- Взаємозв’язок між розв’язками початкової та розширеної задач лінійного програмування не є очевидним і визначається такою теоремою.
- 509. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- 510. Економічний зміст двоїстої задачі й двоїстих оцінок.
- 511. Теореми двоїстості, їх економічна інтерпретація.
- 512. Застосування теорем двоїстості в розв’язуванні задач лінійного програмування.
- 513. Методи розв'язування двоїстої задачі лінійного програмування.
- 514. Аналіз розв'язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- 515. Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- 516. Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- 517. Транспортна задача лінійного програмування. Економічна і математична постановка транспортної задачі.
- 518. Методи побудови опорних планів транспортної задачі. Випадок виродженості. Теорема про розв'язування транспортної задачі.
- 519. Двоїста задача до транспортної задачі. Метод потенціалів.
- 520. Розв'язування транспортної задачі методом потенціалів.
- 521. Відкриті транспортні задачі. Метод розв'язування.
- 522. Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- 523. Геометрична інтерпретація задачі цілочислового програмування.
- 524. Метод Гоморі повністю цілочислових задач. Знаходження цілої й дробової частини числа. Алгоритм розв'язування задачі.
- 525. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- 526. Графічний метод розв'язування задач нелінійного програмування.
- 527. Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв'язування задачі на безумовний екстремум.
- 528. Поняття про опуклі функції. Геометрична інтерпретація задачі опуклого програмування на площині.
- 529. Сідлова точка та необхідні і достатні умови її існування. Теорема Куна-Таккера.
- 530. Квадратична функція та її властивості.
- 531. Математична модель задачі опуклого програмування з сепарабельною цільовою функцією.
- 532. Постановка задачі квадратичного програмування та її математична модель.
- 533. Градієнтні методи розв'язання задач нелінійного програмування та їх класифікація.
- 534. Метод Франка-Вульфа. Алгоритм розв'язування задачі нелінійного програмування.
- 535. Сепарабельна функція та її властивості. Розв'язування задач нелінійного програмування методом кусково-лінійної апроксимації.
- 536. Математична постановка задачі динамічного програмування, її економічний зміст. Принцип оптимальності Беллмана.
- 537. Основні рекурентні співвідношення розв'язування задач динамічного програмування.
- 538. Методи розв'язування задач динамічного програмування. Основні кроки алгоритму розв'язування задачі динамічного програмування.
- 539. Математична постановка задачі стохастичного програмування і область їх застосування в управлінні виробничими системами.
- 540. 3Ведення розв'язання одноетапної статичної задачі стохастичного програмування до детермінованої задачі лінійного програмування.
- 541. Основні поняття теорії ігор. Гра двох гравців з нульовою сумою, правила гри, ціна гри, пара оптимальних стратегій для двох осіб.
- 542. Платіжна матриця. Основна теорема теорії ігор. Принцип мінімаксу.
- 543. Гра в чистих стратегіях. Поняття сідлової точки і її знаходження.
- 544. Гра2x2 взмішаних стратегіях. Алгоритм розв'язування задачі.
- 545. Зведення гри двох осіб до задачі лінійного програмування.
- 547. Основні числові характеристики випадкового процесу та їх властивості.
- 548. Кореляційна функція випадкового процесу та її властивості. Нормована кореляційна функція.
- 549. Поняття про оператор перетворення випадкового процесу. Лінійні однорідні перетворення. Нелінійні перетворення.
- 550. Визначення стаціонарного випадкового процесу, щільність ймовірностей для одного, k періодів.
- 551. Кореляційна функція, нормована кореляційна функція та їх властивості.
- 552. Ергодичні властивості стаціонарного випадкового процесу та його математична трактовка.
- 554. Стаціонарний випадковий процес із лінійною кореляційною функцією.
- 555. Стаціонарний випадковий процес із експоненціальною кореляційною функцією.
- 556. Пуассонівський процес та його математична модель.
- 557. Імовірні твірні функції.
- 558. Визначення ланцюга Маркова. Матриця однокрокового переходу. Однорідні ланцюги Маркова та їх класифікація.
- 559. Поглинаючі однорідні ланцюги Маркова та їх числові характеристики. Фундаментальна матриця.
- 560. Регулярні однорідні ланцюги Маркова та їх числові характеристики. Фундаментальна матриця для цих ланцюгів.