Свойства модулей над евклидовым кольцом
Пусть R - евклидово кольцо. Тогда конечнопорождённые R-модули обладают следующими свойствами:
Всякий подмодуль N конечнопорождённого R-модуля M конечно порождён. (следствие нётеровости кольца R)
Ранг подмодуля N не превосходит ранга модуля M. (следствие главности идеалов в R)
Подмодуль свободного R-модуля свободен. (то же)
Гомоморфизм конечнопорождённых R-модулей всегда приводится к нормальной форме. То есть существуют образующие (базис, если модуль свободен) модуля N, образующие (базис) модуля M, номер и - элементы кольца R, такие что делит и при i>k , а при остальных — . При этом коэффициенты определены однозначно с точностью до умножения на обратимые элементы кольца R. (Тут прямо задействована евклидовость кольца R.)
18. Предел функций в точке.
1. Функция одной переменной. Определение предела функции в точке по Коши. Число bназывается пределом функции у = f(x) при х, стремящемся к а (или в точке а), если для любого положительного числа e существует такое положительное число d, что при всех х ≠ а, таких, что |x – a | < d, выполняется неравенство | f(x) – a | < e .
Определение предела функции в точке по Гейне. Число b называется пределом функции у = f(x) при х, стремящемся к а (или в точке а), если для любой последовательности {xn}, сходящейся ка (стремящейся к а, имеющей пределом число а), причем ни при каком значении n хn ≠ а, последовательность {yn = f(xn)} сходится к b.
Данные определения предполагают, что функция у = f(x) определена в некоторой окрестноститочки а, кроме, быть может, самой точки а.
Определения предела функции в точке по Коши и по Гейне эквивалентны: если число b служит пределом по одному из них, то это верно и по второму.
Указанный предел обозначается так:
Геометрически существование предела функции в точке по Коши означает, что для любого числа e > 0 можно указать на координатной плоскости такой прямоугольник с основанием 2d > 0, высотой 2e и центром в точке (а; b), что все точки графика данной функции на интервале (а–d; а + d), за исключением, быть может, точки М(а; f(а)
Критерий Коши существования предела функции в точке. Число b – предел функции у = f(x) при х, стремящемся к а, тогда и только тогда, когда для любого числа e > 0 можно указать такую проколотую d-окрестность точки а, что для любых чисел х1 и х2, содержащихся в этой окрестности, выполняется неравенство | f(x1) – f(x2) | < e.
Пусть Тогда существуют пределы суммы и произведения функций f(x) и g(x), а в случае с ≠ 0 – и частного этих функций, причём: Если определена сложная функция F(f(x)), причём то существует и предел сложной функции, причём
В теории пределов доказываются следующие два утверждения.
Первый замечательный предел:
Второй замечательный предел: где е – знаменитое иррациональное число, e= 2,71...
При вычислении пределов для раскрытия неопределённостей, связанных с дифференцируемыми функциями, часто используют правило Лопиталя.
2. Функция многих переменных. Пусть функция у = f(x1; x2; …; xn) определена в некоторой выколотой окрестности точки Р(р1; р2; …; рn), принадлежащей области n–мерного пространства, состоящей из точек Х(x1; x2; …; xn). Число b называется пределом функции у =f(x1; x2; …; xn) при Х, стремящейся к Р, если для любого числа e > 0 существует такое положительное число d, что в точках Х выколотой окрестности точки Р, задаваемой неравенствами выполняется неравенство | f(x1;x2; ...;xn) – b | < e.
19. Сумма, разность, произведение и деление пределов функций.
Пусть заданы две функции и . Если существуют и , то существуют и пределы суммы и произведения этих функций, а при и предел частного, причем , , . Для правильного применения этих теорем очень важно существование пределов каждой функции. Не трудно доказать, что предел постоянной функции равен этой постоянной, то есть . Из приведенных формул следует полезное утверждение:
, то есть постоянный множитель можно выносить за знак предела. Если сделать замену переменной , то вычисление предела при всегда можно свести к вычислению предела при . Из определения непрерывной функции следует, что ее предел совпадает со значением функции в этой точке. Доказывают, что все элементарные функции непрерывны в области определения, поэтому, если функция определена, то вычисление предела сводится к применению указанных теорем и подстановке в выражение для функции.
- Примеры
- 5. Ограниченное снизу множество. Инфимум множества.
- 7. Свойство Архимеда. Плотное множество.
- Неархимедово упорядоченное поле
- 8. Единственность поля действительных чисел. Расширенное множество действительных чисел.
- 10. Теорема Больцано – Вейерштрасса.
- 12. Окрестность точки. Внутренняя точка. Открытое и замкнутое множества.
- 13. Проколотая окрестность точки. Открытый и замкнутый интервалы.
- 15. Открытое покрытие. Теорема Гейн-Бореля.
- Лемма Гейне — Бореля
- 16. Понятие функций. Область определения. Область значения.
- 17. Кольцо функций. Деление двух функций.
- Примеры
- Алгоритм Евклида
- Свойства евклидовых колец
- Свойства модулей над евклидовым кольцом
- 20. Односторонние пределы функций.
- 21. Пределы функций в бесконечности. Бесконечный предел.
- 22. Монотонная функция.
- Условия монотонности функции
- 2) В. П. (н. П.) функции f(X) в точке x0 предел верхних (нижних) граней множеств значений функции f(X) в окрестности точки х0, когда эти окрестности стягиваются к точке х0. Он обозначается
- Непрерывность функции в точке
- Определение 25 (точки разрыва). A - точка разрыва f, если
- 28. Композиция двух функции и её непрерывность.
- 29. Ограниченная функция. Ограниченность непрерывных функции в замкнутом интервале.
- Определение
- 37. Дифференцирование сложной функции.
- 38. Односторонние производные функции.
- 39. Экстремумы и точки перегиба функции.
- Экстремумы
- В ыпуклость и вогнутость.
- 40. Теорема Ролля.
- Теорема (Ролля):
- 41. Теорема о промежуточном значении для производной.
- Отношение бесконечно больших
- 43. Полином Тейлора. Остаточный член.
- 44. Теорема Тейлора.
- 45. Расширенная теорема о главном значении.