21. Пределы функций в бесконечности. Бесконечный предел.
Пределы на бесконечности
Предел функции на бесконечности описывает поведение значения данной функции, когда её аргумент становится бесконечно большим. Существуют различные определения таких пределов, но они эквивалентны между собой.
Предел на бесконечности по Коши
Пусть числовая функция задана на множестве , в котором отыщется сколь угодно большой элемент, то есть для всякого положительного в нём найдётся элемент, лежащий за границами отрезка . В этом случае число называется пределом функции на бесконечности, если для произвольного положительного числа отыщется отвечающее ему положительное число такое, что для всех точек, превышающих по абсолютному значению, справедливо неравенство .
Пусть числовая функция задана на множестве , в котором для любого числа найдётся элемент, лежащий правее него. В этом случае число называется пределом функции на плюс бесконечности, если для произвольного положительного числа отыщется отвечающее ему положительное число такое, что для всех точек, лежащих правее , справедливо неравенство .
Пусть числовая функция задана на множестве , в котором для любого числа найдётся элемент, лежащий левее него. В этом случае число называется пределом функции на минус бесконечности, если для произвольного положительного числа отыщется отвечающее ему положительное число такое, что для всех точек, лежащих левее , справедливо неравенство .
Окрестностное определение по Коши
Пусть функция определена на множестве , имеющем элементы вне любой окрестности нуля. В этом случае точка называется пределом функции на бесконечности, если для любой её малой окрестности найдётся достаточно большая окрестность нуля, что значения функции в точках, лежащих вне этой окрестности нуля, попадают в эту окрестность точки .
- Примеры
- 5. Ограниченное снизу множество. Инфимум множества.
- 7. Свойство Архимеда. Плотное множество.
- Неархимедово упорядоченное поле
- 8. Единственность поля действительных чисел. Расширенное множество действительных чисел.
- 10. Теорема Больцано – Вейерштрасса.
- 12. Окрестность точки. Внутренняя точка. Открытое и замкнутое множества.
- 13. Проколотая окрестность точки. Открытый и замкнутый интервалы.
- 15. Открытое покрытие. Теорема Гейн-Бореля.
- Лемма Гейне — Бореля
- 16. Понятие функций. Область определения. Область значения.
- 17. Кольцо функций. Деление двух функций.
- Примеры
- Алгоритм Евклида
- Свойства евклидовых колец
- Свойства модулей над евклидовым кольцом
- 20. Односторонние пределы функций.
- 21. Пределы функций в бесконечности. Бесконечный предел.
- 22. Монотонная функция.
- Условия монотонности функции
- 2) В. П. (н. П.) функции f(X) в точке x0 предел верхних (нижних) граней множеств значений функции f(X) в окрестности точки х0, когда эти окрестности стягиваются к точке х0. Он обозначается
- Непрерывность функции в точке
- Определение 25 (точки разрыва). A - точка разрыва f, если
- 28. Композиция двух функции и её непрерывность.
- 29. Ограниченная функция. Ограниченность непрерывных функции в замкнутом интервале.
- Определение
- 37. Дифференцирование сложной функции.
- 38. Односторонние производные функции.
- 39. Экстремумы и точки перегиба функции.
- Экстремумы
- В ыпуклость и вогнутость.
- 40. Теорема Ролля.
- Теорема (Ролля):
- 41. Теорема о промежуточном значении для производной.
- Отношение бесконечно больших
- 43. Полином Тейлора. Остаточный член.
- 44. Теорема Тейлора.
- 45. Расширенная теорема о главном значении.