41. Теорема о промежуточном значении для производной.
Пусть дана непрерывная функция на отрезке Пусть также и без ограничения общности предположим, что Тогда для любого существует такое, что .
Доказательство Рассмотрим функцию Она непрерывна на отрезке и , Покажем, что существует такая точка , что Разделим отрезок точкой на два равных по длине отрезка, тогда либо и нужная точка найдена, либо и тогда на концах одного из полученных отрезков функция принимает значения разных знаков (на левом конце меньше нуля, на правом больше).
Обозначив полученный отрезок , разделим его снова на два равных по длине отрезка и т.д. Тогда, либо через конечное число шагов придем к искомой точке , либо получим последовательность вложенных отрезков по длине стремящихся к нулю и таких, что
Пусть - общая точка всех отрезков , Тогда и в силу непрерывности функции
Поскольку
получим, что
Следствия
(Теорема о нуле непрерывной функции.)
Словами. Если функция на концах отрезка принимает значения противоположных знаков, то существует точка, в которой она равна нулю. Словами и формулами. Пусть и Тогда такое, что
В частности любой многочлен нечётной степени имеет по меньшей мере один нуль;
42. Правило Лапиталя для неопределенности.
Точная формулировка
Условия:
или ;
и дифференцируемы в проколотой окрестности ;
в проколотой окрестности ;
существует ,
тогда существует .
Пределы также могут быть односторонними.
Доказательство
Отношение бесконечно малых
Докажем теорему для случая, когда пределы функций равны нулю (то есть неопределённость вида .
Поскольку мы рассматриваем функции и только в правой проколотой полуокрестности точки , мы можем непрерывным образом их доопределить в этой точке: пусть . Возьмём некоторый из рассматриваемой полуокрестности и применим к отрезку теорему Коши. По этой теореме получим:
,
но , поэтому .
Дальше, записав определение предела отношения производных и обозначив последний через , из полученного равенства выводим:
для конечного предела и
для бесконечного,
что является определением предела отношения функций.
- Примеры
- 5. Ограниченное снизу множество. Инфимум множества.
- 7. Свойство Архимеда. Плотное множество.
- Неархимедово упорядоченное поле
- 8. Единственность поля действительных чисел. Расширенное множество действительных чисел.
- 10. Теорема Больцано – Вейерштрасса.
- 12. Окрестность точки. Внутренняя точка. Открытое и замкнутое множества.
- 13. Проколотая окрестность точки. Открытый и замкнутый интервалы.
- 15. Открытое покрытие. Теорема Гейн-Бореля.
- Лемма Гейне — Бореля
- 16. Понятие функций. Область определения. Область значения.
- 17. Кольцо функций. Деление двух функций.
- Примеры
- Алгоритм Евклида
- Свойства евклидовых колец
- Свойства модулей над евклидовым кольцом
- 20. Односторонние пределы функций.
- 21. Пределы функций в бесконечности. Бесконечный предел.
- 22. Монотонная функция.
- Условия монотонности функции
- 2) В. П. (н. П.) функции f(X) в точке x0 предел верхних (нижних) граней множеств значений функции f(X) в окрестности точки х0, когда эти окрестности стягиваются к точке х0. Он обозначается
- Непрерывность функции в точке
- Определение 25 (точки разрыва). A - точка разрыва f, если
- 28. Композиция двух функции и её непрерывность.
- 29. Ограниченная функция. Ограниченность непрерывных функции в замкнутом интервале.
- Определение
- 37. Дифференцирование сложной функции.
- 38. Односторонние производные функции.
- 39. Экстремумы и точки перегиба функции.
- Экстремумы
- В ыпуклость и вогнутость.
- 40. Теорема Ролля.
- Теорема (Ролля):
- 41. Теорема о промежуточном значении для производной.
- Отношение бесконечно больших
- 43. Полином Тейлора. Остаточный член.
- 44. Теорема Тейлора.
- 45. Расширенная теорема о главном значении.