Лемма Гейне — Бореля
Формулировка Пусть — замкнутое ограниченное множество в пространстве . Тогда из всякой системы открытых множеств, покрывающих множество , можно выделить конечную подсистему, также покрывающую множество .
Кратко говорят так: всякое открытое покрытие замкнутого ограниченного множества в пространстве содержит конечное подпокрытие. При этом покрытие называется открытым, если оно состоит из открытых множеств.
Имеет место и обратное предложение: для того чтобы всякое открытое покрытие множества содержало конечное подпокрытие необходимо, чтобы множество было замкнутым и ограниченным.
Первое доказательство Пусть отрезок покрыт бесконечной системой интервалов. Предположим, что никакое конечное число интервалов из не покрывает данный отрезок. Разделим отрезок пополам на два равных отрезка: и . По крайней мере один из них нельзя покрыть конечной подсистемой интервалов из . Обозначим его и повторим для него процедуру деления пополам.
Продолжая на каждом шаге делить отрезки пополам, мы получим последовательность вложенных отрезков, по длине стремящихся к нулю, такую что каждый отрезок этой последовательности не может быть покрыт конечным числом интервалов из . Но если — точка, в которую стягиваются отрезки, то, поскольку лежит на отрезке , она должна входить в некоторый интервал системы . Тогда все отрезки последовательности , начиная с некоторого номера, будут покрыты интервалом . Полученное противоречие доказывает справедливость леммы Гейне — Бореля.
Второе доказательство Пусть система интервалов покрывает отрезок . Обозначим через множество всех точек , для которых отрезок может быть покрыт конечным числом интервалов из . Ясно, что если всякий отрезок вида может быть покрыт конечным числом интервалов из , то же верно и для отрезка : для этого возьмем интервал , покрывающий точку , и добавив его к конечному покрытию какого-нибудь отрезка , где , получим конечное покрытие отрезка . Более того, полученная конечная подсистема интервалов покрывает не только отрезок , но и некоторый отрезок вида , где .
Из первого следует, что точная верхняя грань множества принадлежит множеству . Из второго, что она должна быть равна . Тем самым, , то есть отрезок может быть покрыт конечным числом интервалом из .
- Примеры
- 5. Ограниченное снизу множество. Инфимум множества.
- 7. Свойство Архимеда. Плотное множество.
- Неархимедово упорядоченное поле
- 8. Единственность поля действительных чисел. Расширенное множество действительных чисел.
- 10. Теорема Больцано – Вейерштрасса.
- 12. Окрестность точки. Внутренняя точка. Открытое и замкнутое множества.
- 13. Проколотая окрестность точки. Открытый и замкнутый интервалы.
- 15. Открытое покрытие. Теорема Гейн-Бореля.
- Лемма Гейне — Бореля
- 16. Понятие функций. Область определения. Область значения.
- 17. Кольцо функций. Деление двух функций.
- Примеры
- Алгоритм Евклида
- Свойства евклидовых колец
- Свойства модулей над евклидовым кольцом
- 20. Односторонние пределы функций.
- 21. Пределы функций в бесконечности. Бесконечный предел.
- 22. Монотонная функция.
- Условия монотонности функции
- 2) В. П. (н. П.) функции f(X) в точке x0 предел верхних (нижних) граней множеств значений функции f(X) в окрестности точки х0, когда эти окрестности стягиваются к точке х0. Он обозначается
- Непрерывность функции в точке
- Определение 25 (точки разрыва). A - точка разрыва f, если
- 28. Композиция двух функции и её непрерывность.
- 29. Ограниченная функция. Ограниченность непрерывных функции в замкнутом интервале.
- Определение
- 37. Дифференцирование сложной функции.
- 38. Односторонние производные функции.
- 39. Экстремумы и точки перегиба функции.
- Экстремумы
- В ыпуклость и вогнутость.
- 40. Теорема Ролля.
- Теорема (Ролля):
- 41. Теорема о промежуточном значении для производной.
- Отношение бесконечно больших
- 43. Полином Тейлора. Остаточный член.
- 44. Теорема Тейлора.
- 45. Расширенная теорема о главном значении.