2.2. Законы Кирхгофа
Все электрические цепи подчиняются первому и второму законам Кирхгофа.
Первый закон Кирхгофа можно сформулировать двояко:
1) алгебраическая сумма токов, подтекающих к любому узлу схемы, равна нулю;
2) сумма подтекающих к любому узлу токов равна сумме утекающих от узла токов.
Рис.2.3.
,
согласно второй —
.
Очевидно, что эти два выражения не противоречат друг другу.
Параллельное соединение сопротивлений. При параллельном соединении напряжение на всех сопротивлениях одинаково и равно U (рис.2.4).
Рис.2.4.
Ток в источнике по первому закону Кирхгофа равен сумме всех токов:
или
.
Выражение в скобках представляет собой эквивалентную проводимость
. (2.5)
Второй закон Кирхгофа также можно сформулировать двояко:
1) алгебраическая сумма падений напряжения в любом замкнутом контуре равняется алгебраической сумме э.д.с. вдоль того же контура:
.
В Рис.2.5.
.
2) алгебраическая сумма напряжений (не падений напряжения!) вдоль любого замкнутого контура равна нулю:
.
Так, для периферийного контура схемы рис.2.5:
.
П оследовательное соединение сопротивлений. При последовательном соединении ток во всех сопротивлениях одинаков и равен I (рис.2.6).
Рис.2.6.
.
Напряжение на источнике по второму закону Кирхгофа равно сумме падений напряжения
или
.
Выражение в скобках представляет собой эквивалентное сопротивление
. (2.6)
Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.
- 1. Электрическая цепь и её элементы
- 1.1. Классификация электрических цепей и их
- 1.2. Двухполюсные элементы
- 1.3. Двухполюсные активные элементы
- 1.4. Двухполюсные пассивные элементы
- Энергия, поступающая в данный элемент, преобразуется в тепловую (необратимо рассеивается). При этом мощность определяется по закону Джоуля-Ленца:
- Напряжение на зажимах индуктивности возникает только при изменении потокосцепления:
- 2. Линейные электрические цепи постоянного тока
- 2.1. Закон Ома для участка цепи
- 2.2. Законы Кирхгофа
- 2.3. Энергетический баланс (баланс мощностей) в
- 2.4. Методы расчёта электрических цепей
- 2.5. Матричный метод расчёта
- 3. Электрические цепи однофазного синусоидального тока
- Синусоидальный ток и основные его характеристики
- Символический метод расчёта цепей
- Активные и реактивные элементы
- Определение токов в ветвях схем,
- Активная, реактивная и полная мощности
- Двухполюсник в цепи синусоидального тока,
- Трёхфазные цепи, основные соотношения,
- 3. Электрические цепи однофазного синусоидального тока
- Синусоидальный ток и основные его характеристики
- Символический метод расчёта цепей
- Активные и реактивные элементы
- Определение токов в ветвях схем,
- Активная, реактивная и полная мощности
- Двухполюсник в цепи синусоидального тока,
- Трёхфазные цепи, основные соотношения,
- 5.Многополюсные цепи
- 5.1. Определение многополюсников
- 5.2. Основные уравнения четырёхполюсников
- 5.3.Простейшие схемы соединения
- 5.4. Схемы замещения четырёхполюсников
- 6. Переходные процессы в линейных электрических цепях
- 6.1. Общие положения
- 6.2. Законы коммутации, зависимые и
- 6.3. Классический метод расчёта
- Подставив численные значения
- 6.4. Преобразование Лапласа
- Изображение простейших функций времени
- Операторный метод расчёта
- Характеристики звеньев и систем
- 7.2. Понятие о передаточных функциях и частотных
- Дискретный спектр. Апериодические сигналы и их спектры
- Гармонический анализ и разложение функций
- Некоторые свойства периодических кривых
- Преобразование Фурье и спектральные
- 9. Основные понятия и модели теории электромагнитного поля
- 9.1. Основные понятия и определения
- 9.2. Потенциальные и вихревые поля
- 9.3. Основные величины электростатического поля
- 9.4. Основные величины поля электрического тока
- Применяем теорему Остроградского-Гаусса
- 9.5. Основные величины магнитного поля
- 9.6. Передача энергии в электрических цепях.
- Литература, использованная при составлении учебного пособия: