Применяем теорему Остроградского-Гаусса
.
Поскольку интегрирование проводится по объёму конечных размеров, причём равенство нулю сохраняется при любой конечной величине и форме объёма, то подынтегральное выражение должно равняться нулю
. (9.7)
Это первый закон Кирхгофа (точнее, закон Кирхгофа—Ленца) в дифференциальной форме. Он выражает то, что линия поля плотности установившегося тока проводимости нигде не начинаются и не заканчиваются, т.е. всегда замкнуты; иначе говоря, поле плотности тока проводимости имеет либо вихревой, либо смешанный характер.
Уравнение (9.7) называется уравнением непрерывности.
Ток смещения. Допустим, что плотность зарядов внутри объёма (рис. 9.9) возрастает во времени со скоростью д/дt. Теперь дивергенция плотности тока проводимости не равна нулю, так как каждый новый элементарный заряд, входящий в объём, является концом или началом линии поля (в зависимости от знака заряда). Поток вектора плотности тока проводимости через замкнутую поверхность, ограничивающую объём, теперь будет равен увеличению количества зарядов в объёме
.
Знак минус указывает, что при возрастании количества зарядов внутри объёма поток вектора плотности тока, входящий в объём, больше выходящего.
Заменяем левый интеграл по теореме Остроградского—Гаусса
.
Оба равных интеграла взяты по одному и тому же объёму. Равенство сохраняется при любой конечной величине и форме объёма, следовательно, подынтегральные выражения равны друг другу
.
Применяя теорему Гаусса в дифференциальной форме
.
Поскольку порядок проведения операций дифференцирования не играет роли, меняем местами символ дифференцирования по времени и символ дивергенции; последний выносим за скобки
. (9.8)
Выражение (9.8) является более общей формой первого закона Кирхгофа. Второй член в скобках представляет собой плотность тока смещения: её величиной оценивается скорость изменения по времени электрического поля, сопровождаемого таким же магнитным эффектом, как и ток проводимости.
Делаем замену D=aE и, используя закон Ома в дифференциальной форме, получаем
.
Выражение в скобках представляет собой полную плотность тока
.
Её поле является вихревым или смешанным, так как дивергенция равна нулю.
Линии полной плотности тока не имеют поэтому ни начал, ни концов, т. е. всегда образуют замкнутые кривые. Простым примером служит цепь зарядки конденсатора от источника постоянной э.д.с. Ток проводимости в соединительных проводах, плотность которого пр, доставляет заряды из источника на обкладки конденсатора, а в диэлектрике конденсатора нарастает электрическое поле со скоростью дD/дt, равной плотности тока смещения см.
Yandex.RTB R-A-252273-3
- 1. Электрическая цепь и её элементы
- 1.1. Классификация электрических цепей и их
- 1.2. Двухполюсные элементы
- 1.3. Двухполюсные активные элементы
- 1.4. Двухполюсные пассивные элементы
- Энергия, поступающая в данный элемент, преобразуется в тепловую (необратимо рассеивается). При этом мощность определяется по закону Джоуля-Ленца:
- Напряжение на зажимах индуктивности возникает только при изменении потокосцепления:
- 2. Линейные электрические цепи постоянного тока
- 2.1. Закон Ома для участка цепи
- 2.2. Законы Кирхгофа
- 2.3. Энергетический баланс (баланс мощностей) в
- 2.4. Методы расчёта электрических цепей
- 2.5. Матричный метод расчёта
- 3. Электрические цепи однофазного синусоидального тока
- Синусоидальный ток и основные его характеристики
- Символический метод расчёта цепей
- Активные и реактивные элементы
- Определение токов в ветвях схем,
- Активная, реактивная и полная мощности
- Двухполюсник в цепи синусоидального тока,
- Трёхфазные цепи, основные соотношения,
- 3. Электрические цепи однофазного синусоидального тока
- Синусоидальный ток и основные его характеристики
- Символический метод расчёта цепей
- Активные и реактивные элементы
- Определение токов в ветвях схем,
- Активная, реактивная и полная мощности
- Двухполюсник в цепи синусоидального тока,
- Трёхфазные цепи, основные соотношения,
- 5.Многополюсные цепи
- 5.1. Определение многополюсников
- 5.2. Основные уравнения четырёхполюсников
- 5.3.Простейшие схемы соединения
- 5.4. Схемы замещения четырёхполюсников
- 6. Переходные процессы в линейных электрических цепях
- 6.1. Общие положения
- 6.2. Законы коммутации, зависимые и
- 6.3. Классический метод расчёта
- Подставив численные значения
- 6.4. Преобразование Лапласа
- Изображение простейших функций времени
- Операторный метод расчёта
- Характеристики звеньев и систем
- 7.2. Понятие о передаточных функциях и частотных
- Дискретный спектр. Апериодические сигналы и их спектры
- Гармонический анализ и разложение функций
- Некоторые свойства периодических кривых
- Преобразование Фурье и спектральные
- 9. Основные понятия и модели теории электромагнитного поля
- 9.1. Основные понятия и определения
- 9.2. Потенциальные и вихревые поля
- 9.3. Основные величины электростатического поля
- 9.4. Основные величины поля электрического тока
- Применяем теорему Остроградского-Гаусса
- 9.5. Основные величины магнитного поля
- 9.6. Передача энергии в электрических цепях.
- Литература, использованная при составлении учебного пособия: