2.3. Энергетический баланс (баланс мощностей) в
электрических цепях
При протекании токов по сопротивлениям в последних выделяется тепло. На основании закона сохранения энергии количество тепла, выделяющееся в единицу времени в сопротивлениях схемы, должно равняться энергии, доставляемой за то же время источниками электрической энергии.
Если направление тока I, протекающего через источник э.д.с. Е, совпадает с направлением э.д.с. (первая ветвь в схеме рис.2.5), то источник э,д.с. доставляет в цепь в единицу времени энергию (или мощность), равную EI, и произведение EI входит со знаком «плюс» в уравнение энергетического баланса.
Если же направление тока I встречно направлению э.д.с. Е (вторая ветвь в схеме рис.2.5), то источник э.д.с. потребляет энергию (например, заряжается аккумулятор), в этом случае произведение EI входит в уравнение энергетического баланса со знаком «минус».
Когда схема питается не только от источников э.д.с. E, но и от источников тока J, т.е. к отдельным узлам схемы подтекают и утекают токи этих источников, при составлении уравнения энергетического баланса необходимо учесть и энергию, доставляемую источниками тока. Если к узлу а схемы подтекает ток J от источника тока, а от узла b этот ток утекает, то доставляемая источником тока мощность равна UabJ. Напряжение Uab и токи в ветвях схемы должны быть подсчитаны с учётом источника тока J.
Общий вид уравнения энергетического баланса имеет вид:
(2.7)
Yandex.RTB R-A-252273-3
- 1. Электрическая цепь и её элементы
- 1.1. Классификация электрических цепей и их
- 1.2. Двухполюсные элементы
- 1.3. Двухполюсные активные элементы
- 1.4. Двухполюсные пассивные элементы
- Энергия, поступающая в данный элемент, преобразуется в тепловую (необратимо рассеивается). При этом мощность определяется по закону Джоуля-Ленца:
- Напряжение на зажимах индуктивности возникает только при изменении потокосцепления:
- 2. Линейные электрические цепи постоянного тока
- 2.1. Закон Ома для участка цепи
- 2.2. Законы Кирхгофа
- 2.3. Энергетический баланс (баланс мощностей) в
- 2.4. Методы расчёта электрических цепей
- 2.5. Матричный метод расчёта
- 3. Электрические цепи однофазного синусоидального тока
- Синусоидальный ток и основные его характеристики
- Символический метод расчёта цепей
- Активные и реактивные элементы
- Определение токов в ветвях схем,
- Активная, реактивная и полная мощности
- Двухполюсник в цепи синусоидального тока,
- Трёхфазные цепи, основные соотношения,
- 3. Электрические цепи однофазного синусоидального тока
- Синусоидальный ток и основные его характеристики
- Символический метод расчёта цепей
- Активные и реактивные элементы
- Определение токов в ветвях схем,
- Активная, реактивная и полная мощности
- Двухполюсник в цепи синусоидального тока,
- Трёхфазные цепи, основные соотношения,
- 5.Многополюсные цепи
- 5.1. Определение многополюсников
- 5.2. Основные уравнения четырёхполюсников
- 5.3.Простейшие схемы соединения
- 5.4. Схемы замещения четырёхполюсников
- 6. Переходные процессы в линейных электрических цепях
- 6.1. Общие положения
- 6.2. Законы коммутации, зависимые и
- 6.3. Классический метод расчёта
- Подставив численные значения
- 6.4. Преобразование Лапласа
- Изображение простейших функций времени
- Операторный метод расчёта
- Характеристики звеньев и систем
- 7.2. Понятие о передаточных функциях и частотных
- Дискретный спектр. Апериодические сигналы и их спектры
- Гармонический анализ и разложение функций
- Некоторые свойства периодических кривых
- Преобразование Фурье и спектральные
- 9. Основные понятия и модели теории электромагнитного поля
- 9.1. Основные понятия и определения
- 9.2. Потенциальные и вихревые поля
- 9.3. Основные величины электростатического поля
- 9.4. Основные величины поля электрического тока
- Применяем теорему Остроградского-Гаусса
- 9.5. Основные величины магнитного поля
- 9.6. Передача энергии в электрических цепях.
- Литература, использованная при составлении учебного пособия: