§ 32. Приведение прямых линий и плоских фигур
В ЧАСТНЫЕ ПОЛОЖЕНИЯ ОТНОСИТЕЛЬНО ПЛОСКОСТЕЙ ПРОЕКЦИЙ
Задание прямых линий и плоских фигур в частных положениях относительно
плоскостей проекций (см. §§11, 19) значительно упрощает построения и
решение задач, а подчас позволяет получить ответ или непосредственно по
данному чертежу, или при помощи простейших построений.
Например, определение расстояния точки А до горизонтально-проецирующей
плоскости (рис. 201), заданной треугольником BCD, сводится к проведению
перпендикуляра из проекции А' к проекции, выраженной отрезком B'D'. Искомое
расстояние определяется отрезком А'К'.
Излагаемые в настоящей главе способы дают возможность переходить от
общих положений прямых линий и плоских фигур в системе 1, 2 к частным в
той же системе или в дополнительной.
Достигается это:
1) введением дополнительных плоскостей проекций так, чтобы прямая линия
или плоская фигура, не изменяя своего положения в пространстве, оказалась в
каком-либо частном положении в новой системе плоскостей проекций (способ
перемены плоскостей проекций);
2) изменением положения прямой линии или плоской фигуры путем поворота
вокруг некоторой оси так, чтобы прямая или фигура оказалась в частном
положении относительно неизменной системы плоскостей проекций (способ
вращения и частный случай его -- способ совмещения).
Введение дополнительных 'плоскостей проекций в систему 1; 2
рассматривалось в § 8, а примеры построений в дополнительных системах были
приведены в §§ 13 и 15. Теперь рассмотрим это подробнее.
- Оглавление
- § 2. Проекции параллельные
- § 3. Метод монжа
- Глава II точка и прямая
- § 4. Точка в системе двух плоскостей проекций
- § 5. Точка в системе трех плоскостей проекций
- § 6. Ортогональные проекции и система прямоугольных координат
- § 7. Точка в четвертях и октантах пространства
- § 8. Образование дополнительных систем плоскостей проекций
- § 9. Чертежи без указания осей проекций
- § 10. Проекции отрезка прямой линии
- § 11. Особые (частные) положения прямой линии относительно плоскостей проекций
- § 12. Точка на прямой. Следы прямой
- § 13. Построение на чертеже натуральной величины
- § 14. Взаимное положение двух прямых
- § 15. О проекциях плоских углов
- Глава III. Плоскость
- § 16. Различные способы задания плоскости на чертеже
- § 17. Следы плоскости
- § 18. Прямая и точка в плоскости. Прямые особого положения
- § 19. Положения плоскости относительно плоскостей проекций
- § 20. Проведение проецирующей плоскости через прямую линию
- § 21. Построение проекций плоских фигур
- Глава IV. Взаимное положение двух плоскостей, прямой линии и плоскости
- § 22. Обзор взаимных положений двух плоскостей, прямой линии и
- § 23. Пересечение прямой линии с плоскостью, перпендикулярной к одной
- § 24. Построение линии пересечения двух плоскостей
- § 25. Пересечение прямой линии с плоскостью общего положения
- § 26. Построение линии пересечения двух плоскостей по точкам
- § 27. Построение прямой линии и плоскости, параллельных между собой
- § 28. Построение взаимно параллельных плоскостей
- § 29. Построение взаимно перпендикулярных прямой и плоскости
- § 30. Построение взаимно перпендикулярных плоскостей
- § 31. Построение проекций угла между прямой и плоскостью и между двумя
- Глава V. Способы перемены плоскостей проекций и вращения
- § 32. Приведение прямых линий и плоских фигур
- § 33. Способ перемены плоскостей проекций 1)
- § 34. Основы способа вращения ')
- § 35. Вращение точки, отрезка прямой, плоскости вокруг оси,
- § 36. Применение способа вращения без указания на чертеже осей
- § 37. Вращение точки, отрезка прямой, плоскости вокруг оси,