§ 27. Построение прямой линии и плоскости, параллельных между собой
Построение прямой, параллельной заданной плоскости, основано на
следующем положении, известном из геометрии: прямая параллельна плоскости,
если эта прямая параллельна любой прямой в плоскости.
Через заданную точку в пространстве можно провести бесчисленное
множество прямых линий, параллельных заданной плоскости: Для получения
единственного решения требуется какое-нибудь дополнительное условие.
Например, через точку (рис. 180) требуется провести прямую,
параллельную плоскости, заданной треугольником ABC, и плоскости проекций !
(дополнительное условие).
Очевидно, искомая прямая должна быть параллельна линии пересечения
обеих плоскостей, т.е. должна быть параллельна горизонтальному следу
плоскости, заданной треугольником ABC. Для определения направления этого
следа можно воспользоваться горизонталью плоскости, заданной треугольником
ABC. На рис. 180 проведена горизонталь DC и затем через точку M проведена
прямая, параллельная этой горизонтали.
Поставим обратную задачу: через заданную точку провести плоскость,
параллельную заданной прямой линии. Плоскости, проходящие через некоторую
точку А параллельно некоторой прямой ВС, образуют пучок плоскостей, осью
которого является прямая, проходящая через точку А параллельно прямой ВС.
Для получения единственного решения требуется какое-либо дополнительное
условие.
72
Например, надо провести плоскость, параллельную прямой CD, не через
точку, а через прямую АВ (рис. 181). Прямые АВ и CD - скрещивающиеся. Если
через одну из двух скрещивающихся прямых требуется провести плоскость,
параллель-
Рис. 180 Рис. 181
ную другой, то задача имеет единственное решение. Через точку В
проведена прямая, параллельная прямой CD; прямые АВ и BE определяют
плоскость, параллельную прямой CD.
Как установить, параллельна ли данная прямая данной плоскости?
Можно попытаться провести в этой плоскости некоторую прямую параллельно
данной прямой. Если такую прямую в плоскости не удается построить, то
заданные прямая и плоскость не параллельны между собой.
Можно попытаться найти также точку пересечения данной прямой с данной
плоскостью. Если такая точка не может быть найдена,, то заданные прямая и
плоскость взаимно параллельны.
- Оглавление
- § 2. Проекции параллельные
- § 3. Метод монжа
- Глава II точка и прямая
- § 4. Точка в системе двух плоскостей проекций
- § 5. Точка в системе трех плоскостей проекций
- § 6. Ортогональные проекции и система прямоугольных координат
- § 7. Точка в четвертях и октантах пространства
- § 8. Образование дополнительных систем плоскостей проекций
- § 9. Чертежи без указания осей проекций
- § 10. Проекции отрезка прямой линии
- § 11. Особые (частные) положения прямой линии относительно плоскостей проекций
- § 12. Точка на прямой. Следы прямой
- § 13. Построение на чертеже натуральной величины
- § 14. Взаимное положение двух прямых
- § 15. О проекциях плоских углов
- Глава III. Плоскость
- § 16. Различные способы задания плоскости на чертеже
- § 17. Следы плоскости
- § 18. Прямая и точка в плоскости. Прямые особого положения
- § 19. Положения плоскости относительно плоскостей проекций
- § 20. Проведение проецирующей плоскости через прямую линию
- § 21. Построение проекций плоских фигур
- Глава IV. Взаимное положение двух плоскостей, прямой линии и плоскости
- § 22. Обзор взаимных положений двух плоскостей, прямой линии и
- § 23. Пересечение прямой линии с плоскостью, перпендикулярной к одной
- § 24. Построение линии пересечения двух плоскостей
- § 25. Пересечение прямой линии с плоскостью общего положения
- § 26. Построение линии пересечения двух плоскостей по точкам
- § 27. Построение прямой линии и плоскости, параллельных между собой
- § 28. Построение взаимно параллельных плоскостей
- § 29. Построение взаимно перпендикулярных прямой и плоскости
- § 30. Построение взаимно перпендикулярных плоскостей
- § 31. Построение проекций угла между прямой и плоскостью и между двумя
- Глава V. Способы перемены плоскостей проекций и вращения
- § 32. Приведение прямых линий и плоских фигур
- § 33. Способ перемены плоскостей проекций 1)
- § 34. Основы способа вращения ')
- § 35. Вращение точки, отрезка прямой, плоскости вокруг оси,
- § 36. Применение способа вращения без указания на чертеже осей
- § 37. Вращение точки, отрезка прямой, плоскости вокруг оси,