§ 25. Пересечение прямой линии с плоскостью общего положения
Для построения точки пересечения прямой с плоскостью общего положения
надо выполнить следующее (рис. 158):
1) через данную прямую (АВ) провести некоторую вспомогательную
плоскость (ос),
2) построить прямую () пересечения плоскости данной () и
вспомогательной (ос),
3) определить положение точки (К) пересечения прямых -- данной (АВ) и
построенной ().
На рис. 172 показано построение точки пересечения прямой FK с
плоскостью общего положения, заданной двумя пересекающимися прямыми АВ и CD,
Рис. 172 Рис. 173
Через прямую FK проведена вспомогательная фронтально-проецирующая
плоскость . Выбор фронтально-проецирующей плоскости объясняется удобством
построения точек пересечения ее фронтального следа с проекциями А"В" и
С"D". По точкам М" и " найдены горизонтальные проекции М' и ' и
тем самым определена прямая , по которой вспомогательная пл. пересекает
данную пл. . Затем найдена точка К', в которой горизонтальная проекция
прямой непосредственно или
69
при своем продолжении пересекает проекцию M'N'. После этого остается
найти фронтальную проекцию точки пересечения -- точку К".
На рис. 173 показано построение точки пересечения прямой MN с
плоскостью, заданной треугольником ABC. Ход построения не отличается от
рассмотренного на рис. 172. Но вспомогательная (на этот раз
горизонтально-проецирующая) плоскость в данном .случае указана только одним
следом ', проходящим через проекцию M'N'. Пл. пересекает ABC no прямой
DE. Но можно обойтись и без ': мысленно представляя себе
вспомогательную.горизонтально-проецирующую плоскость, проходящую через ,
выражаем проекциями E'D' и E"D" отрезок ED, по которому проведенная через MN
горизонтально-проецирующая плоскость пересекает треугольник.
Считая, что в пространстве заданы прямая и непрозрачный треугольник,
определим видимые и невидимые части прямой MN относительно плоскостей 1 и
2.
В точке на пл. 1 совмещаются горизонтальные проекции двух точек, из
которых одна принадлежит прямой MN (фронтальная проекция E"1), а другая --
стороне треугольника А С (фронтальная проекция E").
Из расположения фронтальных проекций Е'1 и Е" следует, что на участке
КМ прямая находится над треугольником и, следовательно, на горизонтальной
проекции отрезок М'К' -- весь видимый, а отрезок K'D' -- невидимый.
На фронтальной проекции в точке F" совмещаются фронтальные проекции
двух точек, из которых одна принадлежит прямой MN, а другая -- стороне
треугольника АВ. По расположению горизонтальных проекций F' и F( заключаем,
что прямая MN на участке К находится за треугольником и, следовательно, на
фронтальной проекции отрезок F"K" -- невидимый, а отрезок K"N" -- видимый.
На рис. 174-- 176 даны примеры построения точки пересечения прямой с
плоскостью общего положения, выраженной следами. В первом примере через
прямую AB проведена горизонтально-проецирующая пл. , а во втором (рис. 175)
-- горизонтальная плоскость, что оказалось 'возможным сделать, так как в
этом примере прямая AB -- горизонтальная.
Рис. 176
Изображенная на рис. 176 прямая перпендикулярна к пл. ,.
Горизонтальные проекции всех точек этой прямой сливаются в одну точку.
Следовательно, положение проекции К' искомой точки пересечения прямой AB с
пл. известно. Положение проекции К" определено при помощи горизонтали.
- Оглавление
- § 2. Проекции параллельные
- § 3. Метод монжа
- Глава II точка и прямая
- § 4. Точка в системе двух плоскостей проекций
- § 5. Точка в системе трех плоскостей проекций
- § 6. Ортогональные проекции и система прямоугольных координат
- § 7. Точка в четвертях и октантах пространства
- § 8. Образование дополнительных систем плоскостей проекций
- § 9. Чертежи без указания осей проекций
- § 10. Проекции отрезка прямой линии
- § 11. Особые (частные) положения прямой линии относительно плоскостей проекций
- § 12. Точка на прямой. Следы прямой
- § 13. Построение на чертеже натуральной величины
- § 14. Взаимное положение двух прямых
- § 15. О проекциях плоских углов
- Глава III. Плоскость
- § 16. Различные способы задания плоскости на чертеже
- § 17. Следы плоскости
- § 18. Прямая и точка в плоскости. Прямые особого положения
- § 19. Положения плоскости относительно плоскостей проекций
- § 20. Проведение проецирующей плоскости через прямую линию
- § 21. Построение проекций плоских фигур
- Глава IV. Взаимное положение двух плоскостей, прямой линии и плоскости
- § 22. Обзор взаимных положений двух плоскостей, прямой линии и
- § 23. Пересечение прямой линии с плоскостью, перпендикулярной к одной
- § 24. Построение линии пересечения двух плоскостей
- § 25. Пересечение прямой линии с плоскостью общего положения
- § 26. Построение линии пересечения двух плоскостей по точкам
- § 27. Построение прямой линии и плоскости, параллельных между собой
- § 28. Построение взаимно параллельных плоскостей
- § 29. Построение взаимно перпендикулярных прямой и плоскости
- § 30. Построение взаимно перпендикулярных плоскостей
- § 31. Построение проекций угла между прямой и плоскостью и между двумя
- Глава V. Способы перемены плоскостей проекций и вращения
- § 32. Приведение прямых линий и плоских фигур
- § 33. Способ перемены плоскостей проекций 1)
- § 34. Основы способа вращения ')
- § 35. Вращение точки, отрезка прямой, плоскости вокруг оси,
- § 36. Применение способа вращения без указания на чертеже осей
- § 37. Вращение точки, отрезка прямой, плоскости вокруг оси,