§ 28. Построение взаимно параллельных плоскостей
Пусть дается точка К, через которую надо провести плоскость,
параллельную некоторой плоскости, заданной пересекающимися прямыми AF и BF
(рис. 182).
Очевидно, если через точку К провести прямые СК и DK, соответственно
параллельные прямым AF и BF, то плоскость, определяемая прямыми СК и DK,
окажется параллельной заданной плоскости.
Другой пример построения дан на рис. 183 справа. Через точку A
проведена пл. параллельно пл. а. Сначала через точку А проведена прямая,
заведомо параллельная пл. . Это горизонталь с проекциями "" и '',
причем A'N'\\ h'o. Таk
Рис. 182 Рис. 183
как точка N является фронтальным следом горизонтали AN, то через эту
точку пройдет след f"o% f"o,, а через Х - след h'o || h'o. Плоскости
и взаимно параллельны, так как их одноименные пересекающиеся следы взаимно
параллельны.
73
На рис. 184 изображены две параллельные между собой плоскости -- одна
га них задана треугольником ЛВС, другая -- параллельными прямыми DE и FG.
Чем же устанавливается параллельность этих плоскостей? Тем, что в плоскости,
заданной прямыми DE и FG, оказалось возможным провести две пересекающиеся
Рис. 184
прямые KN и КМ, соответственно параллельные пересекающимся прямым АС и
ВС другой плоскости.
Конечно, можно было бы попытаться найти точку пересечения хотя бы
прямой DE с плоскостью треугольника ABC. Неудача подтвердила бы
параллельность плоскостей.
ВОПРОСЫ К §§ 27-28
1. На чем основано построение прямой линии, которая должна быть
параллельна некоторой плоскости?
2. Как провести плоскость через прямую параллельно заданной прямой?
3. Чем определяется взаимная параллельность двух плоскостей?
4. Как провести через точку плоскость, параллельную заданной плоскости?
5. Как проверить на чертеже, параллельны ли одна другой заданные
плоскости?
Yandex.RTB R-A-252273-3
- Оглавление
- § 2. Проекции параллельные
- § 3. Метод монжа
- Глава II точка и прямая
- § 4. Точка в системе двух плоскостей проекций
- § 5. Точка в системе трех плоскостей проекций
- § 6. Ортогональные проекции и система прямоугольных координат
- § 7. Точка в четвертях и октантах пространства
- § 8. Образование дополнительных систем плоскостей проекций
- § 9. Чертежи без указания осей проекций
- § 10. Проекции отрезка прямой линии
- § 11. Особые (частные) положения прямой линии относительно плоскостей проекций
- § 12. Точка на прямой. Следы прямой
- § 13. Построение на чертеже натуральной величины
- § 14. Взаимное положение двух прямых
- § 15. О проекциях плоских углов
- Глава III. Плоскость
- § 16. Различные способы задания плоскости на чертеже
- § 17. Следы плоскости
- § 18. Прямая и точка в плоскости. Прямые особого положения
- § 19. Положения плоскости относительно плоскостей проекций
- § 20. Проведение проецирующей плоскости через прямую линию
- § 21. Построение проекций плоских фигур
- Глава IV. Взаимное положение двух плоскостей, прямой линии и плоскости
- § 22. Обзор взаимных положений двух плоскостей, прямой линии и
- § 23. Пересечение прямой линии с плоскостью, перпендикулярной к одной
- § 24. Построение линии пересечения двух плоскостей
- § 25. Пересечение прямой линии с плоскостью общего положения
- § 26. Построение линии пересечения двух плоскостей по точкам
- § 27. Построение прямой линии и плоскости, параллельных между собой
- § 28. Построение взаимно параллельных плоскостей
- § 29. Построение взаимно перпендикулярных прямой и плоскости
- § 30. Построение взаимно перпендикулярных плоскостей
- § 31. Построение проекций угла между прямой и плоскостью и между двумя
- Глава V. Способы перемены плоскостей проекций и вращения
- § 32. Приведение прямых линий и плоских фигур
- § 33. Способ перемены плоскостей проекций 1)
- § 34. Основы способа вращения ')
- § 35. Вращение точки, отрезка прямой, плоскости вокруг оси,
- § 36. Применение способа вращения без указания на чертеже осей
- § 37. Вращение точки, отрезка прямой, плоскости вокруг оси,