logo search
PRZ_-_shpory

3. Разложение на множители.

Некоторые уравнения можно преобразовать так, что слева будет произведение, а справа - ноль. После чего необходимо каждый множитель приравнять к нулю и найти всевозможные корни уравнения. (Метод преобразования суммы тригонометрических функций в произведение. После применения формул преобразования суммы в произведение уравнение иногда удается либо разложить на множители, либо существенно упростить. Метод преобразования произведения тригонометрических функций в сумму заключается в применении формул преобразования произведения тригонометрических функций в сумм. После их применения уравнение либо удается либо разложить на множители, либо существенно упростить.)