14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
Логарифмическим неравенством называется такое неравенство, в котором неизвестная величина содержится или под знаком логарифма, или в его основании.
Особенностью решения логарифмических неравенств является учет ОДЗ входящих в него логарифмов. В отличие от логарифмических уравнений, условия, определяющие ОДЗ, целесообразно записывать вместе с решением в одной системе, так как в ходе решения некоторые условия на ОДЗ учитываются сразу. Необходимо внимательно следить за величиной основания логарифма, так как при положительном основании логарифма, которое меньше единицы, знак неравенства меняется на противоположный.
Типы неравенств и способы их решения
Всюду далее f(x), g(x), h(x) – некоторые выражения с переменной.
I тип: неравенство вида: (5) где a > 0.
1. Если 0 < a < 1, то неравенство (5) равносильно системе (6)
2. Если a > 1, то неравенство (5) равносильно системе
Заметим, что в этом случае первое неравенство системы (6) можно не решать, так как во втором неравенстве (7)
Решение неравенства (7) сводится к решению совокупности двух систем:
Неравенство f(x) > 0 во второй системе можно не решать, так как оно справедливо при выполнении двух других неравенств этой системы.
II тип: неравенство вида: (8)
1. Если 0 < a < 1, то неравенство (8) равносильно системе (9)
Неравенство g(x) > 0 в системе (9) можно не решать, так как оно выполняется при условии выполнения двух других неравенств этой системы.
2. Если то неравенство (8) равносильно системе (10)
Неравенство в системе (10) можно не решать. (11)
Поскольку в основании содержится переменная величина, то в общем случае решение неравенства (11) зависит от величины основания по сравнению с числом 1. Поэтому решаем совокупность двух
систем:
III тип: неравенство вида (12), где F – некоторое выражение относительно
Необходимо заменить и решить неравенство F(y) > 0. Полученные в качестве решения последнего неравенства промежутки записывают в виде неравенств относительно y, а затем возвращаются к старой переменной.
- 1. Рациональные уравнения и методы их решения
- Методы их решения
- Функциональные методы
- 2. Рациональные неравенства и методы их решения
- Алгебраические неравенства.
- 3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- Основные свойства модуля:
- I тип уравнений
- II тип уравнений
- III тип уравнений
- 4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- 1 Способ. Использование геометрического смысла модуля.
- 5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- Преобразования, приводящие к равносильному уравнению
- 6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- 7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- Совокупности уравнений
- 8. Системы и совокупности неравенств
- Основные методы решения систем двух неравенств с двумя неизвестными
- 9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- 10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- 11. Показательные уравнения. Основные методы решения показательных уравнений
- 12. Показательные неравенства. Основные методы решения показательных неравенств.
- 13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- 14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- 15. Основные методы решения тригонометрических уравнений
- 2. Способ замены.
- 3. Разложение на множители.
- 4. Однородные тригонометрические уравнения вида
- 5. Универсальная замена.
- 16. Основные методы решения тригонометрических неравенств
- 17. Решение уравнений и неравенств, содержащих обратные тригонометрические функции
- 18. Метод интервалов при решении тригонометрических неравенств
- 19. Графики функций и уравнений. Основные преобразования графиков функций
- 1) Область определения функции и область значений функции.
- 3) Пересечение с осями коорд.
- 6) Точки экстремума
- 7) Периодическость функции.
- 21. Основные тригонометрические функции и их св-ва
- 22. Обратные тригонометрические функции, графики, свойства
- 24. Уравнение с параметрами. Решение линейных уравнений с параметрами.
- 25. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- 26. Методы решения уравнения . Методы решения неравенства
- 27. Обобщающий метод интервалов для решения неравенств
- Основные соотношения между элементами треугольника
- 2. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- 3.Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан
- 4.Биссектриса треугольника. Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис
- 5. Метод площадей.
- 6.Теорема Чевы
- 7.Теорема Менелая
- 8. Теорема Пифагора. Обобщенная теорема Пифагора.
- 9.Метрические соотношения в окружности. Свойства хорд
- Свойства хорд
- 10. Свойства секущих и касательных к окружности.
- 11. Измерение углов, связанных с окружностью
- 12. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- 13. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- 14. Прямая Эйлера
- 15. Окружность Эйлера
- 16. Вневписанная окружность.
- 17. Основные виды четырехугольников, их св-ва и признаки
- 18. Вписанные четырехугольники. Вписанные многоугольники
- 19. Описанные четырехугольники. Описанные многоугольники
- 20. Теорема Пифагора для четырехугольников.
- 21. Теорема Птолемея.
- 1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- 2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- 3.Методы построения сечений многогранников.
- 5.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- Параллельность прямых и плоскостей в пространстве.Использование параллельности для построения сечений многогранников.