logo
PRZ_-_shpory

Функциональные методы

4. Использование ограниченности функций.

Некоторые уравнения таковы, что при любом значении из области его определения левая и правая части уравнения удовлетворяют условиям и соответственно, где некоторое число. Тогда решение уравнения сводится к нахождению значений , для которых одновременно и .

Если же хотя бы одно из неравенств строго, то исходное уравнение не имеет решений.

5. Использование монотонности функций. Если на некотором промежутке функции и , входящие в уравнение таковы, что непрерывна и возрастает, а непрерывна и убывает, то равенство возможно только при единственном значении , которое и является корнем данного уравнения на рассматриваемом промежутке. Иногда этот корень можно найти подбором.

6. Графический метод. Иногда полезно рассмотреть эскизы графиков функций и , входящих в уравнение . Этот метод, не являющийся строгим решением, может помочь установить: а) существуют ли у данного уравнения корни и сколько их; б) на какие множества следует разбить область определения уравнения, чтобы на каждом из этих множеств использовать свой способ решения.