6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
Пусть f(x)=0 ––– числовая функция одного или нескольких переменных(аргументов). Решить неравенство (f(x) < 0 f(x) > 0 (1) - это значит найти все значения аргумента (аргументов) функции, при которых неравенство (1) справедливо. Множество всех значении аргумента (аргументов) функции (, при которых неравенство (1) справедливо, называется множеством решении неравенства или просто решением неравенства.
Два неравенства считаются эквивалентными, если множества их решении совпадают.
Под множеством допустимых значении неизвестных, входящих в неравенство, понимают область определения функции f(x)=0.
Если мн-ва решений f1(x)<g1(x) является мн-вом решений f2(x)<g2(x) (при этом области определения уравнений могут не совпадать), то второе нер-во называют нер-вом–следствием первого и пишут f1(x)<g1(x) f2(x)<g2(x).
Теоремы о равносильных преобразованиях неравенств
При решении неравенств используют свойства равносильности.
Неравенства с одной переменной называются равносильными, если множества их решении совпадают. Например, неравенства 3х > 6 и х – 2 > 0 имеют одинаковые множества решении. Эти неравенства – равносильные.
При решении неравенств выполняются только такие преобразования, при которых получаются более простые равносильные неравенства. Эти преобразования возможны при выполнении следующих свойств равносильных неравенств.
Теорема 1. Если к обеим частям неравенства прибавить одно и то же число или одно и то же выражение, которое имеет смысл при всех значениях переменной, то получим неравенство, равносильное данному.
Дано. Р(х) > Q(x) – неравенство, Т(х) – выражение, которое имеет смысл при всех действительных значениях х, х R.
Доказать. Неравенства Р(х) > Q(x) и Р(х) + Т(х) > Q(x) + T(x) – равносильные.
Доказательство. а) Пусть при х = а неравенство Р(а) > Q(a) – верное числовое равенство, т.е. х =а – одно из решении неравенства Р(х) > Q(x), Т(а) – значение Т(х) при х =а. По свойству числовых неравенств Р(а) + Т(а) > Q(a) + T(a) – верное числовое неравенство.
Следовательно, х = а – одно из решений неравенства Р(х) + Т(х) > Q(x) + T(x). Поэтому, если х =а есть решение первого неравенства, то это значение есть также решение второго неравенства.
б) Пусть х = b – одно из решений неравенства Р(х) + Т(х) > Q(x) + T(x), т.е.
P(b) + T(b) > Q(b) + T(b) –верное числовое неравенство. По свойству числовых неравенств P(b) > Q(b) – тоже верное числовое
неравенство. Следовательно, х = b – решение неравенства P(x) > Q(x). Так как множества решений неравенства P(x) > Q(x) и P(x) + T(x) > Q(x) + T(x) совпадают, то эти неравенства равносильные.
Теорема 2. Если в неравенстве любое слагаемое, которое имеет смысл при всех х R, перенести из одно части в другую с противоположным знаком, то получим неравенство, равносильно данному.
Дано. P(x) + T(x) > Q(x) – неравенство, Т(х) – слагаемое, которое имеет смысл при всех х R.
Доказать. Неравенства P(x) + T(x) > Q(x) и P(x) > Q(x) – T(x) – равносильные.
Доказательство. По свойству 1 можно к обеим частям неравенства
P(x) + T(x) > Q(x) прибавить слагаемое (– Т(х)), так как это слагаемое имеет смысл при всех х R; получим равносильное неравенство: P(x) + T(x) – T(x) > Q(x) – T(x), отсюда P(x) > Q(x) – T(x).
Теорема 3. Если обе части неравенства умножить на одно и то же положительное число или на одно и то же выражение, положительное при всех значениях переменной, то получим неравенство, равносильное данному.
Теорема4. Если обе части неравенства умножить на одно и то же отрицательное число или на одно и то же выражение, отрицательное при всех значениях переменной, и изменить знак неравенства на противоположный, то получим неравенство, равносильное данному.
Эта теорема доказывается аналогично 3.
- 1. Рациональные уравнения и методы их решения
- Методы их решения
- Функциональные методы
- 2. Рациональные неравенства и методы их решения
- Алгебраические неравенства.
- 3. Модуль числа. Решение уравнений, содержащих переменную под знаком модуля
- Основные свойства модуля:
- I тип уравнений
- II тип уравнений
- III тип уравнений
- 4. Модуль числа. Решение неравенств, содержащих переменную под знаком модуля
- 1 Способ. Использование геометрического смысла модуля.
- 5.Уравнения. Равносильные уравнения. Уравнения–следствия. Теоремы о равносильных преобразованиях уравнений
- Преобразования, приводящие к равносильному уравнению
- 6. Неравенства. Равносильные неравенства. Неравенства-следствия. Теоремы о равносильных преобразованиях неравенств
- 7. Системы и совокупности уравнений. Основные методы решения систем уравнений
- Совокупности уравнений
- 8. Системы и совокупности неравенств
- Основные методы решения систем двух неравенств с двумя неизвестными
- 9. Иррациональные уравнения. Основные методы решения иррациональных уравнений
- 10. Иррациональные неравенства. Основные методы решения иррациональных неравенств
- 11. Показательные уравнения. Основные методы решения показательных уравнений
- 12. Показательные неравенства. Основные методы решения показательных неравенств.
- 13. Логарифмические уравнения. Основные методы решения логарифмических уравнений
- 14 . Логарифмические неравенства. Основные методы решения логарифмических неравенств
- 15. Основные методы решения тригонометрических уравнений
- 2. Способ замены.
- 3. Разложение на множители.
- 4. Однородные тригонометрические уравнения вида
- 5. Универсальная замена.
- 16. Основные методы решения тригонометрических неравенств
- 17. Решение уравнений и неравенств, содержащих обратные тригонометрические функции
- 18. Метод интервалов при решении тригонометрических неравенств
- 19. Графики функций и уравнений. Основные преобразования графиков функций
- 1) Область определения функции и область значений функции.
- 3) Пересечение с осями коорд.
- 6) Точки экстремума
- 7) Периодическость функции.
- 21. Основные тригонометрические функции и их св-ва
- 22. Обратные тригонометрические функции, графики, свойства
- 24. Уравнение с параметрами. Решение линейных уравнений с параметрами.
- 25. Уравнения с параметрами. Решение квадратных уравнений с параметрами
- 26. Методы решения уравнения . Методы решения неравенства
- 27. Обобщающий метод интервалов для решения неравенств
- Основные соотношения между элементами треугольника
- 2. Ортоцентр треугольника. Ортотреугольник. Свойства ортоцентра треугольника
- 3.Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан
- 4.Биссектриса треугольника. Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис
- 5. Метод площадей.
- 6.Теорема Чевы
- 7.Теорема Менелая
- 8. Теорема Пифагора. Обобщенная теорема Пифагора.
- 9.Метрические соотношения в окружности. Свойства хорд
- Свойства хорд
- 10. Свойства секущих и касательных к окружности.
- 11. Измерение углов, связанных с окружностью
- 12. Окружность, вписанная в треугольник. Формулы, связывающие элементы треугольника с радиусом вписанной окружности
- 13. Окружность, описанная около треугольника. Формулы, связывающие элементы треугольника с радиусом описанной окружности
- 14. Прямая Эйлера
- 15. Окружность Эйлера
- 16. Вневписанная окружность.
- 17. Основные виды четырехугольников, их св-ва и признаки
- 18. Вписанные четырехугольники. Вписанные многоугольники
- 19. Описанные четырехугольники. Описанные многоугольники
- 20. Теорема Пифагора для четырехугольников.
- 21. Теорема Птолемея.
- 1.Свойства параллельного проектирования. Изображение плоских фигур. Требования к проекционным чертежам.
- 2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.
- 3.Методы построения сечений многогранников.
- 5.Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми.
- Параллельность прямых и плоскостей в пространстве.Использование параллельности для построения сечений многогранников.